Other Public-Key Cryptosystems Cryptosystems

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-17/

- 1. How to exchange keys in public? (Diffie-Hellman Key Exchange)
- 2.ElGamal Cryptosystem
- 3.Elliptic Curve Arithmetic
- 4.Elliptic Curve Cryptography
- 5.Pseudorandom Number Generation using Asymmetric Cipher

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 7th Ed, 2013.

Diffie-Hellman Key Agreement

- **□** Allows two party to agree on a secret key using a public channel
- \Box A selects q=large prime, and α =a primitive root of q
- \Box A selects a random # X_A , B selects another random # X_B

□ Eavesdropper can see Y_A , α , q but cannot compute X_A \Box **O** Computing X_A requires discrete logarithm - a difficult problem $Y_{AB} = \alpha^{X_A X_B} \text{ mod } q$

Diffie-Hellman (Cont)

 \Box Example: $\alpha=5$, $q=19$

 \geq A selects 6 and sends 5⁶ mod 19 = 7

 \geq B selects 7 and sends 5⁷ mod 19 = 16

 \triangleright A computes K = 16⁶ mod 19 = 7

 \triangleright B computes K = 7⁷ mod 19 = 7

 \Box Preferably (q-1)/2 should also be a prime.

 \Box Such primes are called safe prime.

Man-in-Middle Attack on Diffie-Hellman

\Box Diffie-Hellman does not provide authentication

- \Box X can then intercept, decrypt, re-encrypt, forward all messages between Alice & Bob
- **□** You can use RSA authentication and other alternatives

ElGamal Cryptography

- \Box Public-key cryptosystem related to D-H
- \Box Uses exponentiation in a finite (Galois)
- \Box Security based difficulty of computing discrete logarithms
- \Box X_A is the private key, $\{\alpha, q, Y_{A}\}$ is the public key

 \Box *k* must be unique each time. Otherwise insecure.

Ref: http://en.wikipedia.org/wiki/ElGamal_encryption

ElGamal Cryptography Example

- \Box Use field GF(19) $q=19$ and $\alpha=10$
- \Box Alice chooses $x_A = 5$,
- \Box Bob wants to sent message $M=17$, selects a random key k=6

Elliptic Curve Cryptography Elliptic Curve Cryptography

- \Box Majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- \Box Imposes a significant load in storing and processing keys and messages
- \Box An alternative is to use elliptic curves
- \Box Offers same security with smaller bit sizes
- \Box Newer, but not as well analyzed

Elliptic Curves over Real Numbers Elliptic Curves over Real Numbers

- \Box An elliptic curve is defined by an equation in two variables $x \& y$,
	- $y^2 = x^3 + ax + b$
	- \triangleright Where x, y, a, b are all real numbers
	- $\geq 4a^3 + 27b^2 \neq 0$
- \Box The set of points $E(a, b)$ forms an abelian group with respect to "addition" operation defined as follows:
	- \triangleright P+Q is reflection of the intersection R
	- \triangleright O (Infinity) acts as additive identity
	- ➤ To double a point P, find intersection of tangent and curve
	- Closure: P+Q ε E
	- ➤ Associativity: $P+(Q+R) = (P+Q)+R$
	- ➤ Identity: P+O=P
	- Inverse: -P ε E
	- \triangleright Commutative: P+Q = Q+P

Elliptic Curve over Real Numbers (Cont) Elliptic Curve over Real Numbers (Cont)

 \Box Slope of line PQ is: $\Delta = (y_Q - y_P)/(x_Q - x_P)$ \Box The sum R=P+Q is: \triangleright x_R= Δ^2 -x_P-x_Q \rightarrow y_R=-y_p+ Δ (x_P-x_R) \Box P+P=2P=R

$$
x_R = \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P
$$

$$
y_r = \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P
$$

(b) $y^2 = x^3 + x + 1$

10-10

Finite Elliptic Curves Finite Elliptic Curves

- **Elliptic curve cryptography uses curves whose variables** $\&$ coefficients are defined over GF
	- \triangleright **Prime curves**: E_p(a,b) defined over Z_p

Use integers modulo a prime

Easily implemented in software

 \triangleright **Binary curves**: E_{2m}(a,b) defined over GF(2ⁿ)

Use polynomials with binary coefficients

Easily implemented in hardware

 \Box Cryptography: Addition in elliptic = multiplication in Integer

- \triangleright Repeated addition = Exponentiation
- \triangleright Easy to compute Q=P+P+...+P=kP, where Q, P ε E
- \triangleright Hard to find k given Q, P (Similar to discrete log)

Finite Elliptic Curve Example Finite Elliptic Curve Example

- $E_p(a,b)$: y²=x³+ax+b mod p $E_{23}(1,1)$: y²=x³+x+1 mod 23 \Box Consider only +ve x and y $R = P+Q$ \rightarrow x_R=(λ^2 -x_p-x_Q) mod p \rightarrow y_R=(λ (x_p-x_R)-y_p) mod p
	- Where

$$
\lambda = \begin{cases}\n\left(\frac{y_Q - y_P}{x_Q - x_P}\right) \mod p & \text{if } P \neq Q \\
\left(\frac{3x_P^2 + a}{2y_P}\right) \mod p & \text{if } P = Q\n\end{cases}
$$
\n**Example:** (3,10)+(3,10)

\n
$$
\lambda = \left(\frac{3(3^2) + 1}{2 \times 10}\right) \mod 23 = \frac{1}{4} \mod 23 = 6
$$
\n
$$
x_R = (6^2 - 3 - 3) \mod 23 = 7
$$
\n
$$
y_R = (6(3 - 7) - 10) \mod 23 = 12
$$

Table 10.1 Points on the Elliptic Curve $E_{23}(1,1)$

ECC Diffie-Hellman

- \Box Select a suitable curve E_{α} (a, b)
- \Box Select base point $G = (x_1, y_1)$ with large order n s.t. n $G=0$
- \Box A & B select private keys n_A <n, n_B <n
- \Box Compute public keys: $Y_a=n_aG$, $Y_B=n_BG$
- \Box Compute shared key: $K=n_AY_B$, $K=n_BY_A$
	- \triangleright Same since K= $n_A n_B$ G
- \Box Attacker would need to find K, hard

ECC Encryption/Decryption ECC Encryption/Decryption

- \Box Several alternatives, will consider simplest
- \Box Select suitable curve & point G
- \Box Encode any message M as a point on the elliptic curve P_m
- \Box Each user chooses private key n_a < n
- **Q** Computes public key $P_A = n_A G$, $P_B = n_B G$
- **Encrypt P**_m: $C_m = \{ kG, P_m + kP_B \}$, k random
- **Decrypt C_m compute:**

 $P_m + kP_B - n_B(kG) = P_m + k(n_B G) - n_B(kG) = P_m$

ECC Encryption/Decryption Example ECC Encryption/Decryption Example

$$
\Box
$$
 E₂₅₇(0, -4), P_m=(112,26), n_B=101 G=(2, 2)

$$
P_B = n_B G = 101(2, 2) = (197, 167)
$$

$$
k=41, C_1=kG=41(2,2)=(136, 128)
$$

$$
C2=Pm+kPB=(112, 26) + 41(197, 167)
$$

=(112, 26)+(68, 84) = (246, 174)

$$
C_m = \{C_1, C_2\} = \{(136, 128), (246, 174)\}
$$

$$
Pm=C2-nBC1 = (246, 174)-101(136, 128)
$$

= (246, 174)-(68, 84) = (112, 26)

ECC Security ECC Security

- \Box Relies on elliptic curve logarithm problem
- \Box Can use much smaller key sizes than with RSA etc
- \Box For equivalent key lengths computations are roughly equivalent
- \Box Hence for similar security ECC offers significant computational advantages

PRNG based on Asymmetric Ciphers PRNG based on Asymmetric Ciphers

- **□** Asymmetric encryption algorithms produce apparently random output
- \Box Hence can be used to build a pseudorandom number generator (PRNG)
- \Box Much slower than symmetric algorithms
- \Box Hence only use to generate a short pseudorandom bit sequence (e.g., key)

PRNG based on RSA PRNG based on RSA■ Micali-Schnorr PRNG using RSA \ge in ANSI X9.82 and ISO 18031 $seed = x_0$ n, e, r, k n, e, r, k n, e, r, k Encrypt **Encrypt Encrypt** $y_3 = x_2^e \mod n$ $y_1 = x_0^e \bmod n$ $y_2 = x_1^e \bmod n$ $x_1 = r \text{ most}$ $x_2 = r \text{ most}$ $x_3 = r \text{ most}$ significant bits significant bits significant bits $z_1 = k$ most $z_2 = k$ most $z_3 = k$ most significant bits significant bits significant bits Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse571-17/ ©2017 Raj Jain

PRNG based on ECC PRNG based on ECC

- Dual elliptic curve PRNG
	- NIST SP 800-9, ANSI X9.82 and ISO 18031
- **□** Some controversy on security /inefficiency
- \Box Notation: $x(P) = x$ coordinate of P. lsb_i $(x)=i$ least sig bits of x

- 1. Diffie-Hellman key exchange allows creating a secret in public based on exponentiation
- 2.ElGamal cryptography uses D-H
- 3. Elliptic Curve cryptography is based on defining addition of points on an elliptic curve in $GF(p)$ or $GF(2^n)$
- 4. Public key cryptography (both RSA and ECC) can also be used to generate cryptographically secure pseudorandom numbers.

Homework 10 Homework 10

- \Box 1. Consider an Elgamal scheme with a common prime q=71 and a primitive root α =7.
	- \triangleright A. If B has public key Y_B=3 and A choose the random integer $k=2$, what is the ciphertext of M=30?
	- \triangleright B. If A now chooses a different value of k so that the encoding of M=30 is C=(59,C₂). What is the integer C₂?
- 2. For an elliptic curve cryptography using $E_{11}(1,6)$ and G= $(2,7)$. B's private key n_B=7.
	- \triangleright A. Find B's Public key P_B
	- \triangleright B. A wishes to encrypt the message $P_m=(10, 9)$ and chooses the random value k=3. Determine the ciphertext C_m
	- \triangleright C. Show the calculation by which B recovers P_m from C_m.

Lab 10: Kali Linux Lab 10: Kali Linux

- \Box Prepare a bootable USB drive with Kali Linux
- \Box See instructions at:

http://docs.kali.org/downloading/kali-linux-live-usb-install

- \Box You will need a 4GB or larger USB 3 flash drive
- **□** Also, you will need to change the boot sequence in your computer to allow booting from the USB drive
- \Box No other changes are required to your disk or computer.
- **□** Explore Kali and submit the list of penetration tools available in Kali
- \Box Note: Kali is a goddess that destroys evil

Ref: https://en.wikipedia.org/wiki/Kali_Linux

Acronyms Acronyms

- \Box ANSI American National Standards Institute
- \Box DEC Dual Elliptic Curve
- \Box DSS Digital Signature Standard
- \Box ECC Elliptic curve cryptography
- \Box GF Galvois Field
- \Box IEEE Institute of Electrical and Electronic Engineers
- \Box ISO International Standards Organization
- \Box MIME Multipurpose Internet Multimedia Email
- \Box NIST National Institute of Science and Technology
- \Box OFB Output feedback mode
- \Box PRF Pseudo-random function
- \Box PRNG Pseudo-Random Number Generator
- \Box RSA Rivest, Shamir, and Adleman
- \Box SP Standard Practice
- \Box VPN Virtual Private Network

Related Modules Related Modules

CSE571S: Network Security (Spring 2017), http://www.cse.wustl.edu/~jain/cse571-17/index.html

CSE473S: Introduction to Computer Networks (Fall 2016), http://www.cse.wustl.edu/~jain/cse473-16/index.html

Wireless and Mobile Networking (Spring 2016), http://www.cse.wustl.edu/~jain/cse574-16/index.html

CSE571S: Network Security (Fall 2014), http://www.cse.wustl.edu/~jain/cse571-14/index.html

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

