# Other Public-Key Cryptosystems

#### Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/



- How to exchange keys in public? (Diffie-Hellman Key Exchange)
- 2. ElGamal Cryptosystem
- 3. Elliptic Curve Arithmetic
- 4. Elliptic Curve Cryptography
- 5. Pseudorandom Number Generation using Asymmetric Cipher

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 7<sup>th</sup> Ed, 2013.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

# **Diffie-Hellman Key Agreement**

- Allows two party to agree on a secret key using a public channel
- □ A selects q=large prime, and  $\alpha$ =a primitive root of q
- □ A selects a random  $\# X_A$ , B selects another random  $\# X_B$



Y<sub>AB</sub> = α<sup>XA XB</sup> mod q
 Eavesdropper can see Y<sub>A</sub>, α, q but cannot compute X<sub>A</sub>
 Computing X<sub>A</sub> requires discrete logarithm - a difficult problem

#### **Diffie-Hellman (Cont)**

**Example:**  $\alpha$ =5, q=19

> A selects 6 and sends  $5^6 \mod 19 = 7$ 

> B selects 7 and sends  $5^7 \mod 19 = 16$ 

> A computes  $K = 16^6 \mod 19 = 7$ 

> B computes  $K = 7^7 \mod 19 = 7$ 

□ Preferably (q-1)/2 should also be a prime.

□ Such primes are called safe prime.

#### **Man-in-Middle Attack on Diffie-Hellman**

#### Diffie-Hellman does not provide authentication



- □ X can then intercept, decrypt, re-encrypt, forward all messages between Alice & Bob
- □ You can use RSA authentication and other alternatives

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

# **ElGamal Cryptography**

- □ Public-key cryptosystem related to D-H
- Uses exponentiation in a finite (Galois)
- Security based difficulty of computing discrete logarithms
- □  $X_A$  is the private key, { $\alpha$ , q,  $Y_A$ } is the public key



 $\square$  *k* must be unique each time. Otherwise insecure.

Ref: <u>http://en.wikipedia.org/wiki/ElGamal\_encryption</u>

Washington University in St. Louis<a href="http://www.cse.wustl.edu/~jain/cse571-17/">http://www.cse.wustl.edu/~jain/cse571-17/</a>

#### **ElGamal Cryptography Example**

- □ Use field GF(19) q=19 and  $\alpha$ =10
- □ Alice chooses  $x_A = 5$ ,
- □ Bob wants to sent message M=17, selects a random key k=6



# **Elliptic Curve Cryptography**

- Majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- Imposes a significant load in storing and processing keys and messages
- □ An alternative is to use elliptic curves
- □ Offers same security with smaller bit sizes
- □ Newer, but not as well analyzed

#### **Elliptic Curves over Real Numbers**

- An elliptic curve is defined by an equation in two variables x & y,
  - >  $y^2 = x^3 + ax + b$
  - Where x, y, a, b are all real numbers
  - >  $4a^3+27b^2≠0$
- The set of points E(a, b) forms an abelian group with respect to "addition" operation defined as follows:
  - > P+Q is reflection of the intersection R
  - > O (Infinity) acts as additive identity
  - > To double a point P, find intersection of tangent and curve
  - > Closure:  $P+Q \in E$
  - > Associativity: P+(Q+R) = (P+Q)+R
  - > Identity: P+O=P
  - > Inverse: -P  $\varepsilon$  E
  - > Commutative: P+Q = Q+P







#### **Elliptic Curve over Real Numbers (Cont)**

■ Slope of line PQ is: >  $\Delta = (y_Q - y_P)/(x_Q - x_P)$ ■ The sum R=P+Q is: >  $x_R = \Delta^2 - x_P - x_Q$ >  $y_R = -y_P + \Delta(x_P - x_R)$ ■ P+P=2P=R

$$x_R = \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P$$
$$y_r = \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P$$



(b)  $y^2 = x^3 + x + 1$ 

Washington University in St. Louis

10-10

# **Finite Elliptic Curves**

- Elliptic curve cryptography uses curves whose variables & coefficients are defined over GF
  - > Prime curves:  $E_p(a, b)$  defined over  $Z_p$

□ Use integers modulo a prime

Easily implemented in software

> **Binary curves**:  $E_{2m}$  (a, b) defined over  $GF(2^n)$ 

□ Use polynomials with binary coefficients

Easily implemented in hardware

Cryptography: Addition in elliptic = multiplication in Integer

- Repeated addition = Exponentiation
- > Easy to compute Q=P+P+...+P=kP, where  $Q, P \in E$
- > Hard to find k given Q, P (Similar to discrete log)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

#### **Finite Elliptic Curve Example**

- $E_p(a,b): y^2=x^3+ax+b \mod p$ ■  $E_{23}(1,1): y^2=x^3+x+1 \mod 23$
- $\Box Consider only + ve x and y$
- $\Box$  R=P+Q
  - >  $x_R = (\lambda^2 x_P x_Q) \mod p$
  - >  $y_R = (\lambda(x_P x_R) y_P) \mod p$
  - > Where

$$\lambda = \begin{cases} \left(\frac{y_Q - y_P}{x_Q - x_P}\right) \mod p & \text{if } P \neq Q \\ \left(\frac{3x_P^2 + a}{2y_P}\right) \mod p & \text{if } P = Q \end{cases}$$

$$\square \text{ Example: } (3,10) + (3,10) \\ \lambda = \left(\frac{3(3^2) + 1}{2 \times 10}\right) \mod 23 = \frac{1}{4} \mod 23 = 6 \\ x_R = (6^2 - 3 - 3) \mod 23 = 7 \\ y_R = (6(3 - 7) - 10) \mod 23 = 12 \end{cases}$$

Table 10.1Points on the Elliptic Curve  $E_{23}(1, 1)$ 

| (0, 1)  | (6, 4)   | (12, 19) |
|---------|----------|----------|
| (0, 22) | (6, 19)  | (13,7)   |
| (1,7)   | (7, 11)  | (13, 16) |
| (1, 16) | (7, 12)  | (17, 3)  |
| (3, 10) | (9,7)    | (17, 20) |
| (3, 13) | (9, 16)  | (18,3)   |
| (4,0)   | (11, 3)  | (18, 20) |
| (5,4)   | (11, 20) | (19, 5)  |
| (5, 19) | (12, 4)  | (19, 18) |

Washington University in St. Louis



#### **ECC Diffie-Hellman**

- **Select a suitable curve**  $E_q$  (a, b)
- □ Select base point  $G = (x_1, y_1)$  with large order n s.t. nG=0
- □ A & B select private keys  $n_A < n$ ,  $n_B < n$
- Compute public keys:  $Y_A = n_A G$ ,  $Y_B = n_B G$
- □ Compute shared key:  $K=n_AY_B$ ,  $K=n_BY_A$ 
  - > Same since  $K=n_An_BG$
- □ Attacker would need to find K, hard



## **ECC Encryption/Decryption**

- □ Several alternatives, will consider simplest
- □ Select suitable curve & point G
- **\Box** Encode any message M as a point on the elliptic curve  $P_m$
- Each user chooses private key n<sub>A</sub><n</p>
- Computes public key  $P_A = n_A G$ ,  $P_B = n_B G$
- □ Encrypt  $P_m$  :  $C_m = \{ kG, P_m + kP_B \}$ , k random
- **Decrypt**  $C_m$  compute:

 $P_m + kP_B - n_B (kG) = P_m + k (n_B G) - n_B (kG) = P_m$ 

## **ECC Encryption/Decryption Example**

$$\square$$
 E<sub>257</sub>(0, -4), P<sub>m</sub>=(112,26), n<sub>B</sub>=101 G=(2, 2)

**D** 
$$P_B = n_B G = 101(2, 2) = (197, 167)$$

□ 
$$k=41, C_1=kG=41(2,2)=(136, 128)$$

• 
$$C_2 = P_m + kP_B = (112, 26) + 41(197, 167)$$
  
=(112, 26)+(68, 84) = (246, 174)

$$\Box C_m = \{C_1, C_2\} = \{(136, 128), (246, 174)\}$$

□ 
$$P_m = C_2 - n_B C_1 = (246, 174) - 101(136, 128)$$
  
=(246, 174)-(68, 84) = (112, 26)

Washington University in St. Louis

## **ECC Security**

- □ Relies on elliptic curve logarithm problem
- □ Can use much smaller key sizes than with RSA etc
- □ For equivalent key lengths computations are roughly equivalent
- Hence for similar security ECC offers significant computational advantages

|                                    | Symmetric scheme<br>(key size in bits) | ECC-based<br>scheme<br>(size of <i>n</i> in bits) | RSA/DSA<br>(modulus size in<br>bits) |
|------------------------------------|----------------------------------------|---------------------------------------------------|--------------------------------------|
|                                    | 56                                     | 112                                               | 512                                  |
|                                    | 80                                     | 160                                               | 1024                                 |
|                                    | 112                                    | 224                                               | 2048                                 |
|                                    | 128                                    | 256                                               | 3072                                 |
|                                    | 192                                    | 384                                               | 7680                                 |
|                                    | 256                                    | 512                                               | 15360                                |
| Washington University in St. Louis | http://www.cse.                        | wustl.edu/~jain/cse571-                           | 17/                                  |

# **PRNG based on Asymmetric Ciphers**

- Asymmetric encryption algorithms produce apparently random output
- Hence can be used to build a pseudorandom number generator (PRNG)
- □ Much slower than symmetric algorithms
- Hence only use to generate a short pseudorandom bit sequence (e.g., key)



10-19

#### **PRNG based on ECC**

- Dual elliptic curve PRNG
  - > NIST SP 800-9, ANSI X9.82 and ISO 18031
- □ Some controversy on security /inefficiency
- □ Notation: x(P) = x coordinate of P.  $lsb_i(x) = i$  least sig bits of x





- 1. Diffie-Hellman key exchange allows creating a secret in public based on exponentiation
- 2. ElGamal cryptography uses D-H
- 3. Elliptic Curve cryptography is based on defining addition of points on an elliptic curve in GF(p) or GF(2<sup>n</sup>)
- 4. Public key cryptography (both RSA and ECC) can also be used to generate cryptographically secure pseudorandom numbers.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

## Homework 10

- □ 1. Consider an Elgamal scheme with a common prime q=71 and a primitive root  $\alpha$ =7.
  - > A. If B has public key  $Y_B=3$  and A choose the random integer k=2, what is the ciphertext of M=30?
  - > B. If A now chooses a different value of k so that the encoding of M=30 is C=(59,C<sub>2</sub>). What is the integer C<sub>2</sub>?
- □ 2. For an elliptic curve cryptography using  $E_{11}(1,6)$  and G=(2,7). B's private key  $n_B=7$ .
  - > A. Find B's Public key  $P_B$
  - > B. A wishes to encrypt the message  $P_m = (10, 9)$  and chooses the random value k=3. Determine the ciphertext  $C_m$
  - > C. Show the calculation by which B recovers  $P_m$  from  $C_m$ .

Washington University in St. Louis



# Lab 10: Kali Linux

- Prepare a bootable USB drive with Kali Linux
- □ See instructions at:

http://docs.kali.org/downloading/kali-linux-live-usb-install

- □ You will need a 4GB or larger USB 3 flash drive
- Also, you will need to change the boot sequence in your computer to allow booting from the USB drive
- □ No other changes are required to your disk or computer.
- Explore Kali and submit the list of penetration tools available in Kali
- □ Note: Kali is a goddess that destroys evil

Ref: <u>https://en.wikipedia.org/wiki/Kali\_Linux</u> Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

#### Acronyms

- ANSI American National Standards Institute
- DEC Dual Elliptic Curve
- DSS Digital Signature Standard
- □ ECC Elliptic curve cryptography
- GF Galvois Field
- □ IEEE Institute of Electrical and Electronic Engineers
- ISO International Standards Organization
- MIME Multipurpose Internet Multimedia Email
- □ NIST National Institute of Science and Technology
- □ OFB Output feedback mode
- PRF Pseudo-random function
- PRNGPseudo-Random Number Generator
- **RSA** Rivest, Shamir, and Adleman
- □ SP Standard Practice
- □ VPN Virtual Private Network

Washington University in St. Louis



# **Related Modules**



CSE571S: Network Security (Spring 2017), http://www.cse.wustl.edu/~jain/cse571-17/index.html

CSE473S: Introduction to Computer Networks (Fall 2016), http://www.cse.wustl.edu/~jain/cse473-16/index.html





Wireless and Mobile Networking (Spring 2016), <a href="http://www.cse.wustl.edu/~jain/cse574-16/index.html">http://www.cse.wustl.edu/~jain/cse574-16/index.html</a>

CSE571S: Network Security (Fall 2014), http://www.cse.wustl.edu/~jain/cse571-14/index.html





Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse571-17/

