User Authentication Protocols

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-14/

Washington	University in St. Louis

- 1. Remote User Authentication Using Secret Keys
- 2. Kerberos V4
- 3. Kerberos V5
- 4. Remote User Authentication Using Public Keys
- 5. Federated Identity Management

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 6th Ed, 2013.

Washington University in St. Louis

CSE571S

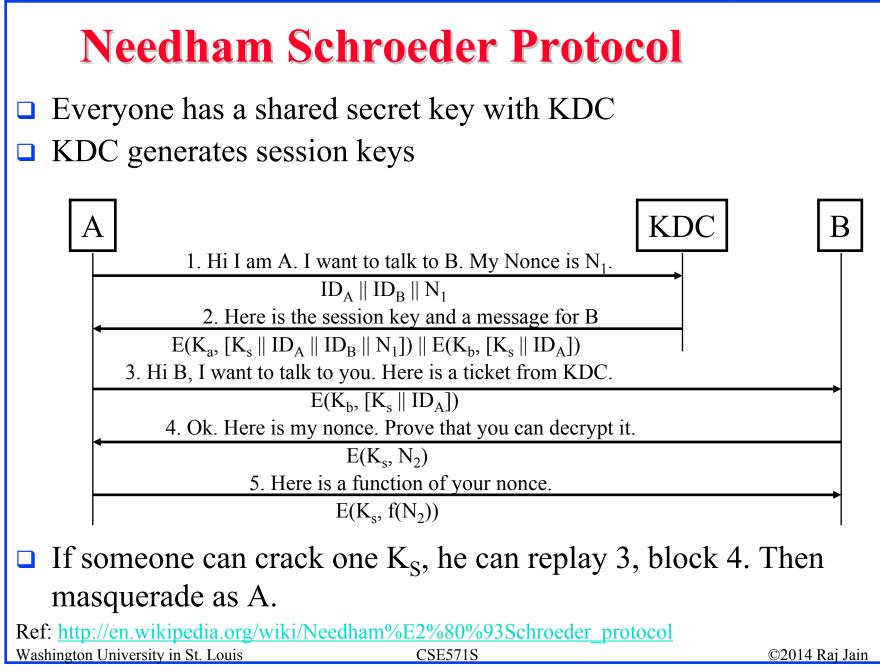
©2014 Raj Jain

User Authentication

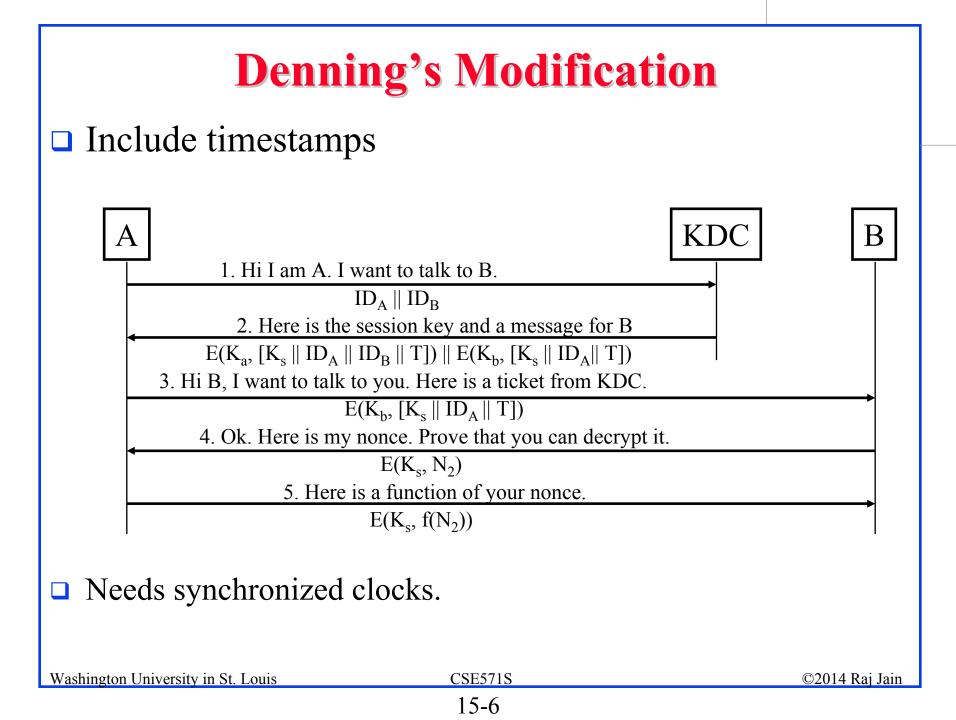
- Four means of authenticating user's identity:
 Based on something the individual
 - 1. Knows e.g., password, PIN
 - 2. Possesses e.g., key, token, smartcard
 - 3. Is (static biometrics) e.g., fingerprint, retina
 - 4. Does (dynamic biometrics) e.g., voice, sign
- Can use alone or combined. All have issues
- May be one-way or mutual
- Key issues are
 - Confidentiality to protect session keys
 - Timeliness to prevent replay attacks

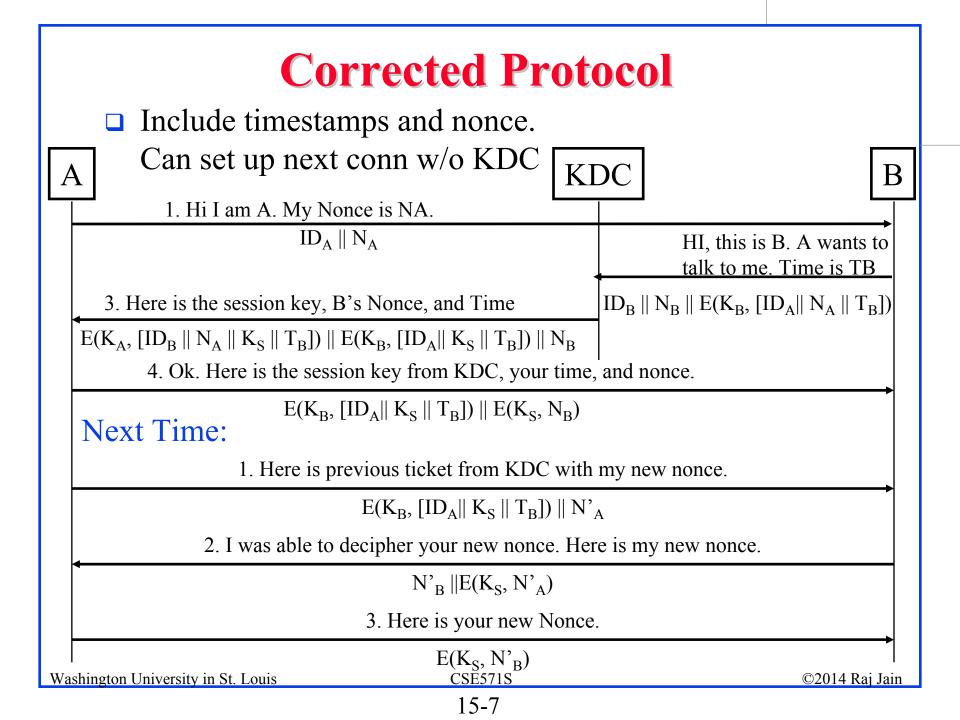
Ref:	http://	en.wiki	pedia.org	/wiki/Mutual	authentication
	-			-	

Washington University in St. Louis


CSE571S

Replay Attacks

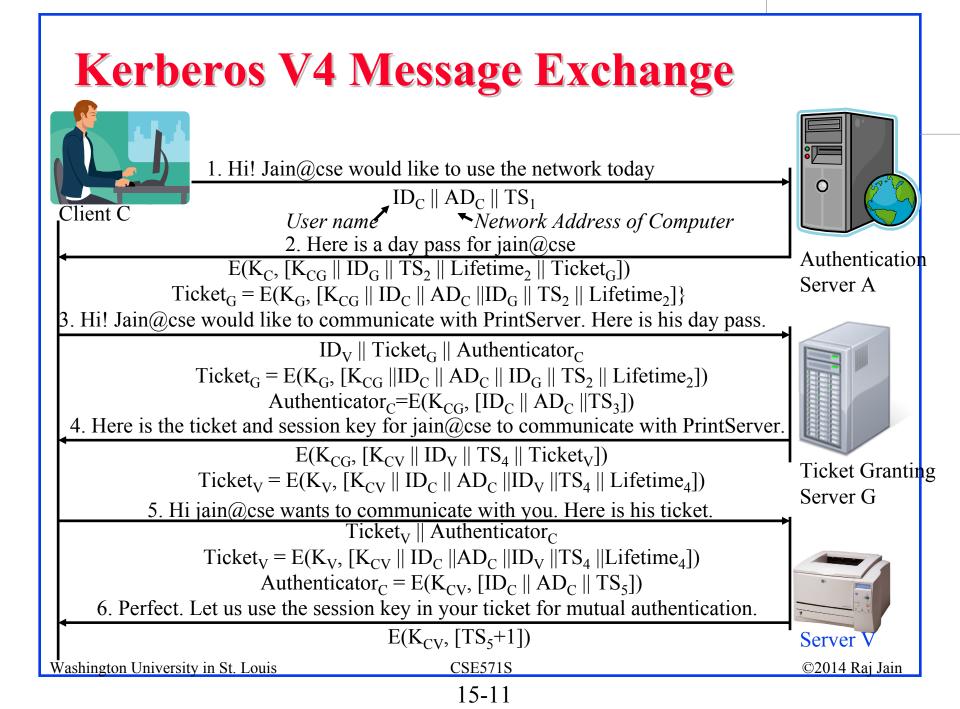

□ A valid signed message is copied and later resent. Examples:


- Simple replay: No timestamp
- Repetition that can be logged: time stamped message within valid time
- Repetition that cannot be detected: Original message replaced with a new message
- Backward replay without modification: Source's message back to the source
- Countermeasures include
 - > Use of sequence numbers (generally impractical)
 - > Timestamps (needs synchronized clocks)
 - > Challenge/response (using unique nonce)

Ref: <u>http://en.wikipedia.org/wiki/Replay_attack</u>, <u>http://en.wikipedia.org/wiki/Reflection_attack</u>

15-5

Overview of Kerberos


- Allows two users (or client and server) to authenticate each other over an insecure network
- Named after the Greek mythological character Kerberos (or Cerberus), known in Greek mythology as being the monstrous three-headed guard dog of Hades
- Designed originally for Project Athena at M.I.T.
- □ Implementation freely available from M.I.T.
- □ V5 is an Internet Standard (RFC 4120)
- Windows 2000/XP/Server 2003/Vista use Kerberos as their default authentication mechanism
- □ Apple's Mac OS X clients and servers also use Kerberos
- Apache HTTP Server, Eudora, NFS, OpenSSH, rcp (remote copy), rsh, X window system allow using Kerberos for authentication.
 Washington University in St. Louis

Overview (Cont)

- Protects against eavesdropping and replay attacks
- Uses a trusted third party (Authentication Server) and symmetric key cryptography
- □ First 3 versions are no longer in use.
- □ V5 is a generalization of V4 with several problems fixed and additional features.
- □ It is easier to understand V5 if you know V4
- □ Learn V4's features and mistakes

Ref: <u>http://en.wikipedia.org/wiki/Kerberos_(protocol)</u>

Washington University in St. Louis

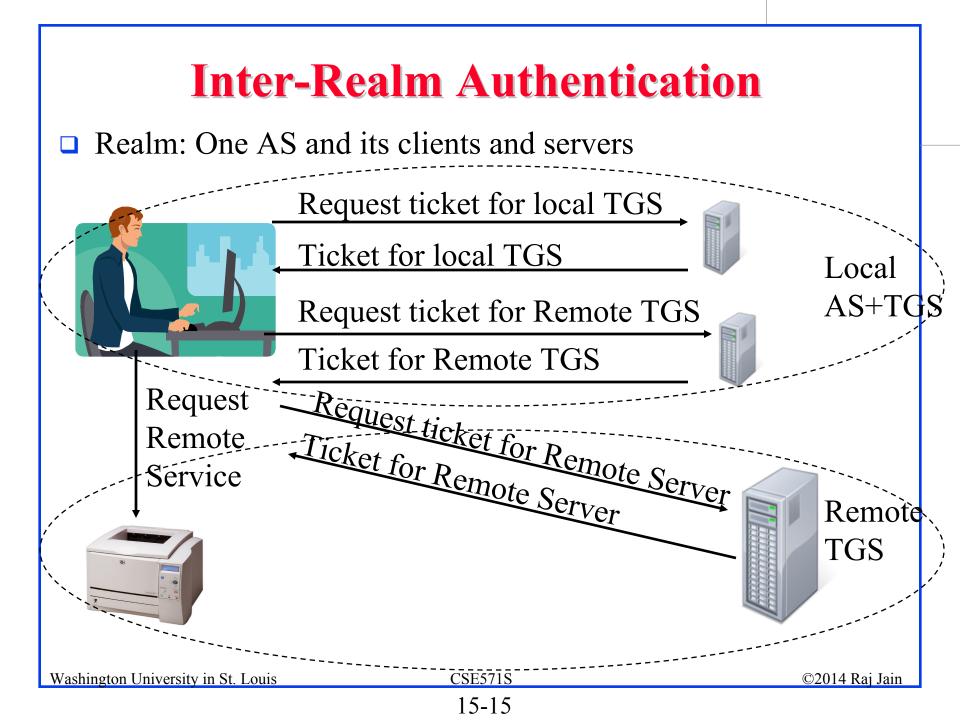
Kerberos V4 Concepts

- □ Authentication Server (AS): Physically secure node with complete authentication database
- Principal: Authentication Server A, Ticket Granting Server G, Client (Computer) C, User (Human) U, Server V
- □ Ticket Granting Server (TGS)

$$\Box \text{ Keys: } K_{cg}, K_{cv}, K_{ag}, K_{u}, K_{gv}$$

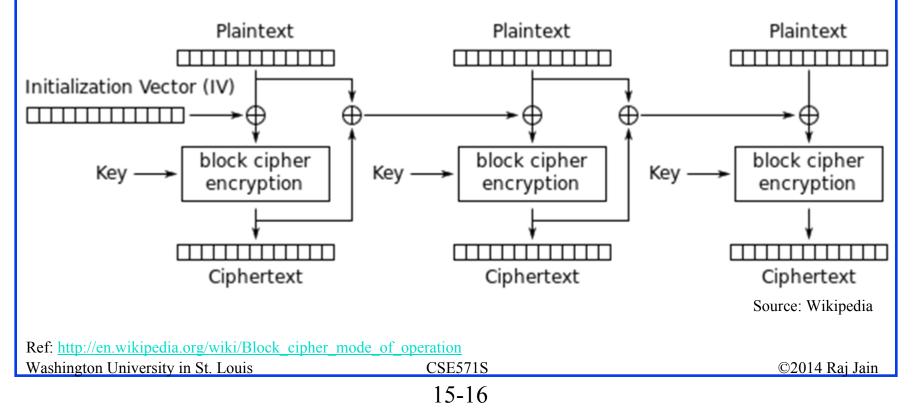
- □ **Ticket**: Encrypted information. All current V4 implementations use DES.
- Ticket Granting Ticket (TGT): Allows user to get tickets from TGS

Concepts (Cont)


- Authenticator: Name and time encrypted with a session key. Sent from client to server with the ticket and from server to client.
- **Credentials**: Session key + Ticket
- User enters a name and password. Client converts the password to a key K_u.
- □ TGT and the session key are good for a limited time (21 hours).

Key Design Principles

- The network is open ⇒ Need a proper secret key to understand the messages received (except message 1, which is in clear)
- 2. Every client and server has a pre-shared secret with the AS.
- 3. AS and Ticket Granting Server (TGS) are logically separate but share a secret key
- 4. Both AS and TGS are stateless and do not need to remember the permissions granted. All the state is in the tickets. (Day pass is just a longer term ticket)
- 5. Longer term secrets are used less frequently. Short term secrets are created and destroyed after a limited use.


Ref: <u>http://en.wikipedia.org/wiki/Ticket_Granting_Ticket</u>

Washington University in St. Louis	CSE571S	©2014 Raj Jain
	15-14	

Privacy and Integrity

- □ Kerberos V4 uses an extension to CBC
- □ With CBC, only two blocks are affected by a change.
- Propagating Cipher Block Chaining (PCBC) causes all blocks to change.

Kerberos V4 Issues

- 1. Names, Instance, Realm (non standard). Limited to 40 Char.
- 2. Only DES encryption. Not strong.
- 3. Only IPv4 addresses. No IPv6 or ISO CLNP addresses.
- 4. Byte ordering indicated in the message (ASN.1 better)
- 5. Maximum life time limited to 21 hours: 8 bit life time in units of 5 minutes
- 6. No delegation. A server cannot access another server on behalf of the client.
- 7. Inter-realm authentication limited to pairs \Rightarrow N² pairs
- 8. Double encryption of the ticket: $K_{client}[K_{server}[...]]$
- 9. Propagating Cipher Block Chaining (PCBC) does not detect interchange of cipher blocks
- 10. No subsession keys for long sessions
- 11. Brute force password attack Washington University in St. Louis CSE571S

©2014 Rai Jain

ASN.1

- Abstract Syntax Notation One
- Joint ISO and ITU-T standard, Original 1984, latest 2008.
- □ Used to specify protocol data structures
- X.400 electronic mail, X.500 and LDAP directory services, H.323 VOIP, SNMP, etc use ASN.1
- Pre-Defined: 1=Boolean, 2=Integer, 3=Bit String,
 4=Octet String, 5=Null, 6=Object Identifier, 9=Real
- Constructed: SEQUENCE (structure), SEQUENCE OF (lists), CHOICE, ...

 Ref: http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

 Washington University in St. Louis
 CSE571S

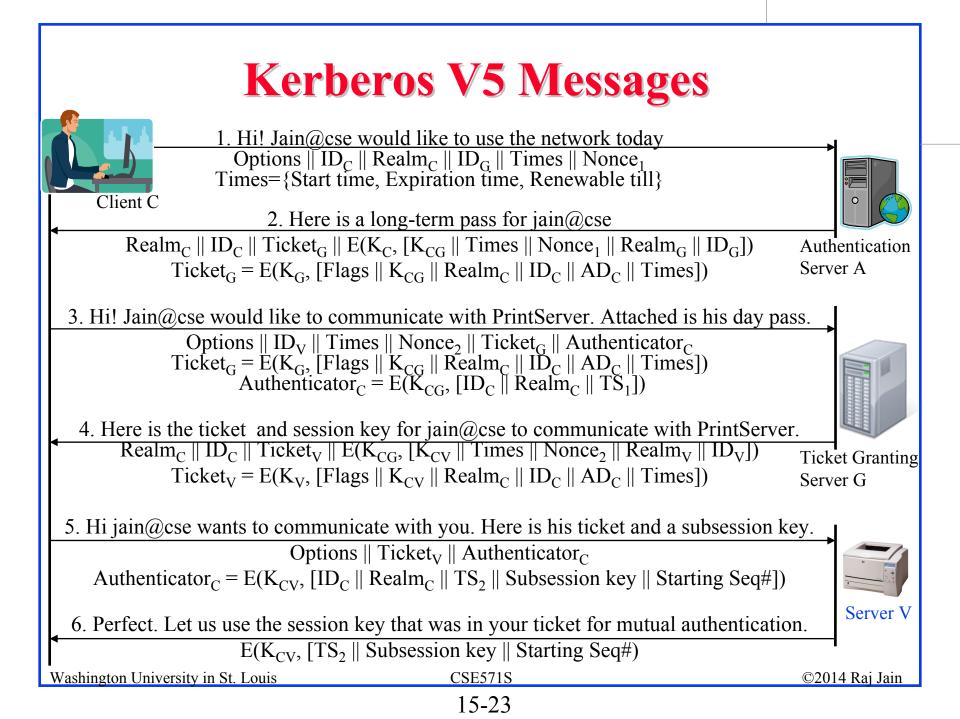
 15-18

ASN.1 Example

AddressTy	$vpe ::= SEQUENCE \{$
name	OCTET STRING,
number	INTEGER,
street	OCTET STRING,
city	OCTET STRING,
state	OCTET STRING,
zipCode	INTEGER
}	

Encoding Rules

- □ ASN.1 only specifies the structure.
- Encoding rules indicate how to encode the structure in to bits on the wire.
- Examples: Basic Encoding Rules (BER), Packed Encoding Rules (PER), XML Encoding rules (XER), Distinguished Encoding Rules (DER), ...
- □ In BER, everything is encoded as Tag-Length-Value.

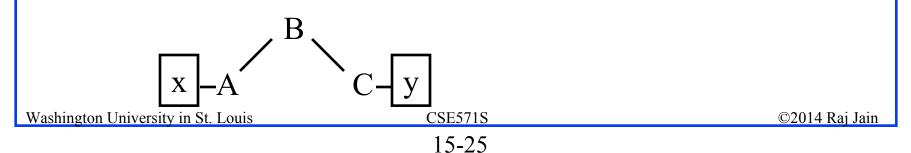

BER Example

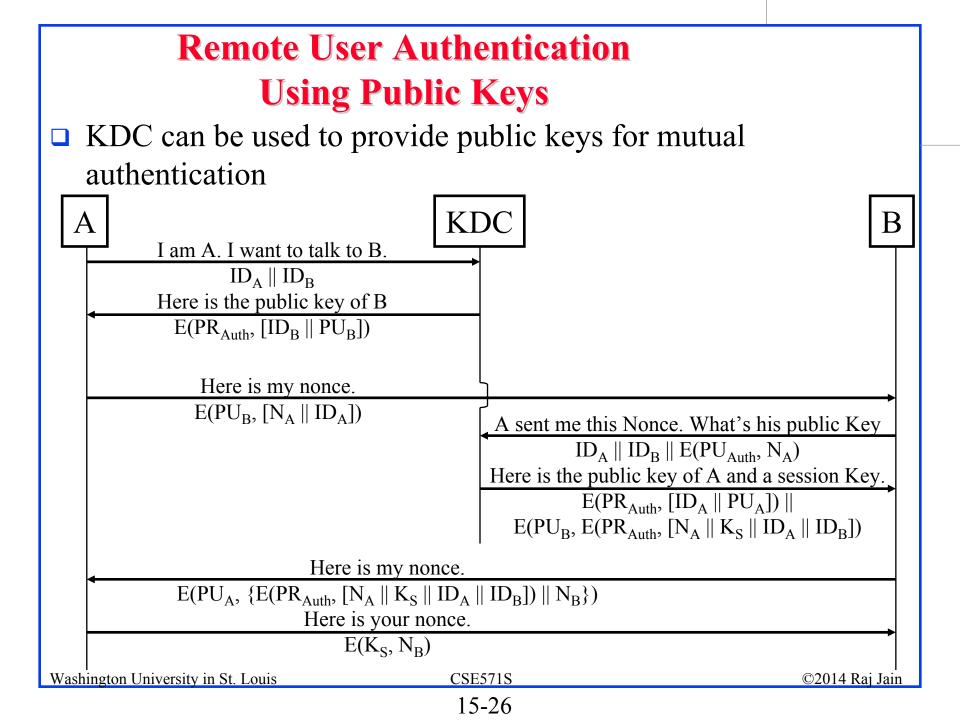
□ John Miller, 126 Main Street, Big City, MO 63130

30	2F		04	C	В	4A	6F	68	6E	20	4D	69	6C	6C	65	72
Seq.	Len		Oct St	r L	en	J	0	h	n		M	li	1	1	e	r
02 01 7E Int Len 126																
04	()B	4D	61	69	6E	20	53	74	72	65	65	74			
Oct str		Len	Μ	a	i	n		S	t	r	e	e	t			
04		08	42	69	67	20	43	69) 74	79						
Oct S	Str 1	Len	B	i	g		C	i	\mathbf{t}	У						
04		02	4D	4F	0	$2 \mid$	02]	F6	3 9A 0							
Oct S	Str []	Len	M	0	Ir	nt 1	en	631	30	Null						
Washington University in St. Louis CSE571S ©2014 Raj Jain																
15-21																

Kerberos V5

- 1. Names, Instance, Realm have ASN.1 names. Can be any length.
- 2. Any encryption. Encryption scheme coded.
- 3. Any type of addresses. Address type specified.
- 4. ASN.1 Byte ordering
- 5. Explicit Start time and End time. Can have arbitrary life times.
- 6. Delegation possible by requesting proxy able tickets.
- 7. Inter-realm authentication hierarchy
- 8. No Double encryption of the ticket
- 9. Explicit integrity mechanism detects block interchange
- 10. Subsession keys for long sessions
- 11. Password attack made difficult by a pre-authentication mechanism




Kerberos V5 Flags

- □ **Initial**: Ticket issued by AS (not by TGT)
- Pre-Authent: The client was pre-authenticated by AS before a ticket was issued
- HW-Authent: Pre-authenticated using hardware (e.g., smart card) possessed solely by name client
- Renewable: TGS can issue a new ticket that expires at a later date. Allows long life time.
- □ May-Postdate: TGS can issue a post-dated ticket
- Postdated: This ticket is postdated. Check authentication time field for original authentication time

Kerberos V5 Flags (Cont)

- Invalid: This ticket is invalid and must be validated by TGS before use. Used with postdated tickets.
- Proxiable: TGS can issue a new service granting ticket with a different network address
- **Proxy**: Indicates that this ticket is a proxy
- □ **Forwardable**: TGS can issue a ticket with a different address for use in a different realm.
- Forwarded: This ticket has been forwarded or was issued based on a forwardable TGT. x@A can get to y@C via B. List of all transited realms is put in the ticket.

Remote User Authentication Using Public Keys (Cont)

One-Way Authentication: Required for Email

- □ Can use public keys for encryption and authentication
- □ Long message \Rightarrow Computation complexity
- For encryption, better to use a secret key and send the secret key using public key

 $A \rightarrow B: E(PU_B, K_S) || E(K_S, M)$

□ For authentication, use a digital signature

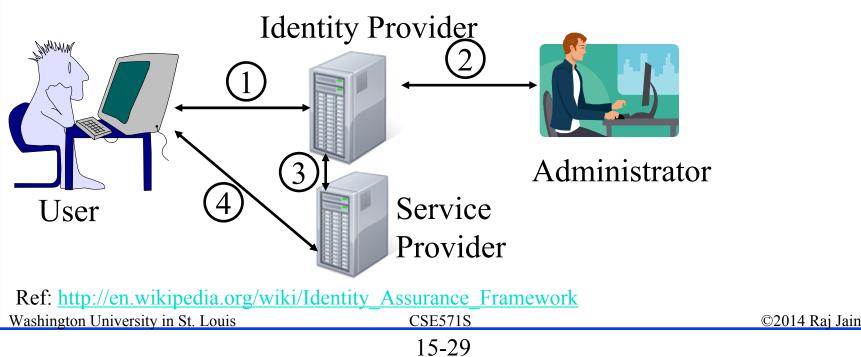
 $A \rightarrow B: M \parallel E(PR_A, H(M))$

Note: Someone else can replace the signature ⇒Encrypt the message and signature:

 $A \rightarrow B: E(PU_B, [M \parallel E(PR_A, H(M))])$

Recipient B must know A's public key
 A can send its certificate with the message

Washington University in St. Louis


Federated Identity Management

- □ Generalization of **Single-Sign on**
- User is authenticated once and then can use resources at other partner organizations across multiple security domains
- □ Examples:
 - > Employees accessing purchasing sites
 - > Health insurance providers
 - Purchasing sites to shipping sites
- □ Identity Management is more general than authentication
 - > Authentication, authorization, accounting, provisioning, workflow automation, delegated administration, password synchronization, self-service password reset, federation

Kerberos contains many of these elements Ref: http://en.wikipedia.org/wiki/Federated_identity, http://en.wikipedia.org/wiki/Federated_identity_management, http://en.wikipedia.org/wiki/Identity_management, http://en.wikipedia.org/wiki/Category:Identity_management_systems Washington University in St. Louis CSE571S C2014 Raj Jain 15-28

Federated Identity Operation

- 1. End user authenticates with the identity provider, e.g., Facebook
- 2. Administrator associates attributes with each user or each role
- 3. Identity provider passes the id, attributes, and authentication to service provider
- 4. Service provider opens session with the user

Standards for Federated ID Management

Security Assertion Markup Language (SAML)

- > XML-based language for exchange of security information between online business partners
- Part of OASIS (Organization for the Advancement of Structured Information Standards) standards for federated identity management

Ref: http://en.wikipedia.org/wiki/SAML,

http://en.wikipedia.org/wiki/Web_Single_Sign-On_Metadata_Exchange_Protocol http://en.wikipedia.org/wiki/OpenID

Washington University in St. Louis

CSE571S

15 - 30

©2014 Raj Jain

- Kerberos is a symmetric key authentication system. Uses Authentication Server and ticket granting server.
- Kerberos V4 is widely deployed. V5 generalizes the design. Generalized ASN.1 names, General encryption, addresses, names. Allows delegation, post-dated tickets, renewals, Inter-realm authentication
- □ Federated identity management allows users to authenticate once and use resources on other partner organizations.
- Security Assertion Markup Language (SAML) is used to pass on security tokens for federated identity management.

Homework 15

A. In Kerberos V4, when Bob receives a Ticket from Alice:

- a. How does he know that it is genuine?
- b. How does he know that it came from Alice?
- c. When Alice receives a reply, how does she know that it is not a replay of an earlier message from Bob?
- d. What does the Ticket contain that allows Alice and Bob to talk securely

Limit your answer to one sentence each.

B. What would be the BER encoding of {firstname "Ed"} {weight 259}? ASN.1 type for octet strings is 4 and for integers it is 2.