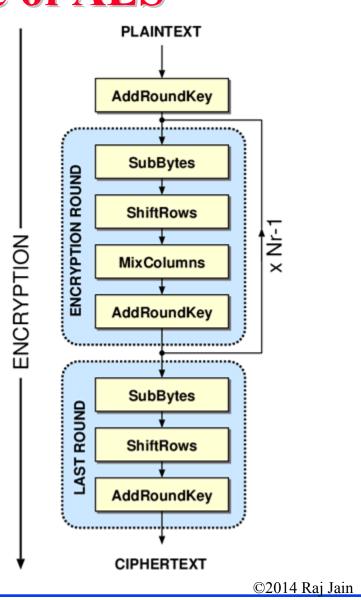
Advanced Encryption Standard (AES)

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

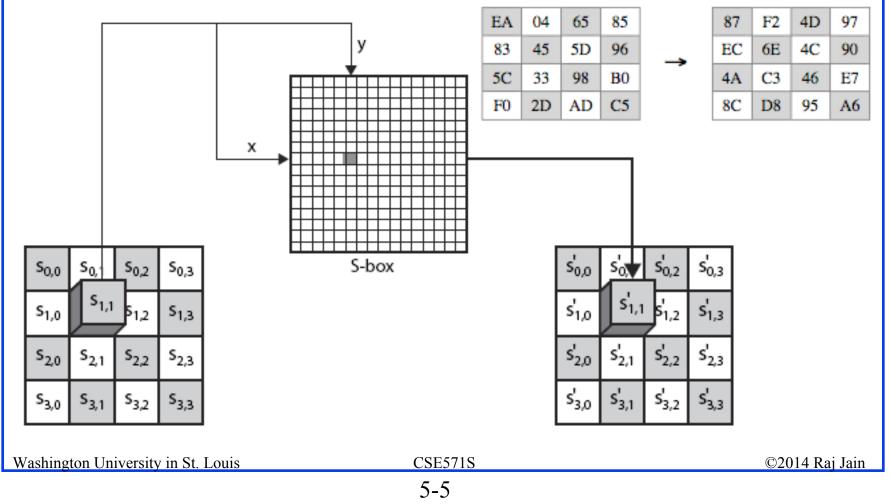
http://www.cse.wustl.edu/~jain/cse571-14/

- 1. AES Structure
- 2. AES Round Function
- 3. AES Key Expansion
- 4. AES Decryption

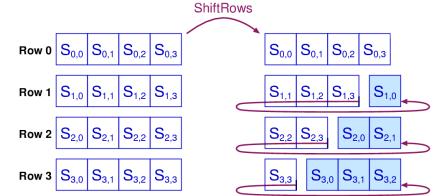

These slides are based on Lawrie Brown's slides supplied with William Stalling's book "Cryptography and Network Security: Principles and Practice," 6th Ed, 2013.

Advanced Encryption Standard (AES)

- □ Published by NIST in Nov 2001: FIPS PUB 197
- Based on a competition won by Rijmen and Daemen (Rijndael) from Belgium
- 22 submissions, 7 did not satisfy all requirements
 15 submissions 5 finalists: Mars, RC6, Rijndael, Serpent, Twofish. Winner: Rijndael.
- Rijndael allows many block sizes and key sizes
- □ AES restricts it to:
 - Block Size: 128 bits
 - > Key sizes: 128, 192, 256 (AES-128, AES-192, AES-256)
- □ An iterative rather than Feistel cipher
 - > operates on entire data block in every round
- **Byte operations:** Easy to implement in software


Basic Structure of AES

- **A** # Rounds $N_r = 6 + \max\{N_b, N_k\}$
- \square N_b = 32-bit words in the block
- \square N_k = 32-bit words in key
- □ AES-128: 10
- □ AES-192: 12
- □ AES-256: 14


1. Substitute Bytes

Each byte is replaced by byte indexed by row (left 4-bits) & column (right 4-bits) of a 16x16 table

2. Shift Rows

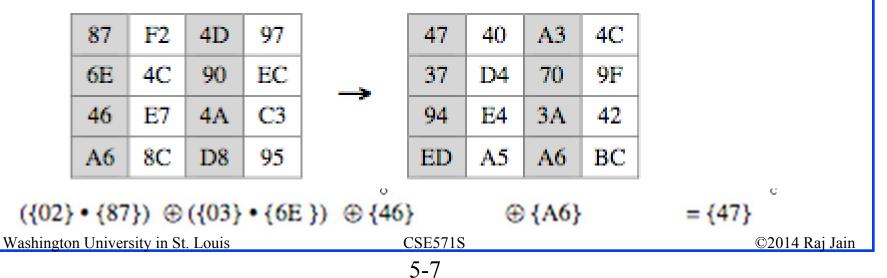
- □ 1st row is unchanged
- □ 2nd row does 1 byte circular shift to left
- □ 3rd row does 2 byte circular shift to left
- □ 4th row does 3 byte circular shift to left

87	F2	4D	97
EC	6E	4C	90
4A	C3	46	E7
8C	D8	95	A6

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

Washington University in St. Louis

CSE571S


5-6

©2014 Raj Jain

3. Mix Columns

□ Effectively a matrix multiplication in GF(2⁸) using prime polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$

[02	03	01	$01][s_{0,0}]$	S _{0,1}	$s_{0,2}$	S0,3	[s00	s _{0,1}	S _{0,2}	s0,3
01	02	03	01 s _{1,0}	<i>s</i> _{1,1}	s _{1,2}	s _{1,3}	s _{1,0}	s _{1,1}	s1,2	s _{1,3}
01	01	02	03 s _{2,0}	s _{2,1}	s _{2,2}	s2,3	= . .s _{2,0}	$s_{2,1}$	S2,2	\$2,3
03	01	01	$\begin{array}{c} 01 \\ 01 \\ 03 \\ 02 \\ \end{array} \begin{bmatrix} s_{0,0} \\ s_{1,0} \\ s_{2,0} \\ s_{3,0} \end{bmatrix}$	s _{3,1}	⁸ 3,2	s _{3,3}	s _{3,0}	s _{3,1}	\$3,2	S3,3

AES Arithmetic

Uses arithmetic in the finite field GF(2⁸) with irreducible polynomial

 $m(x) = x^8 + x^4 + x^3 + x + 1$ which is (1 0001 1011) or {11B}

Example:

>
$$\{02\} \cdot \{87\} \mod \{11B\} = (0000\ 0010)(1000\ 0111)$$

= $x\ (x^7 + x^2 + x + 1) \mod (x^8 + x^4 + x^3 + x + 1)$
= $(x^8 + x^3 + x^2 + x) \mod (x^8 + x^4 + x^3 + x + 1)$
= $x^4 + x^2 + 1 = (0001\ 0101)$

- $\{03\} \bullet \{6E\} = \{11\} \{110\ 1110\} = (x+1)\ (x^6 + x^5 + x^3 + x^2 + x)\ \text{mod}\ (\dots) \\ = (x^7 + x^6 + x^4 + x^3 + x^2 + x^6 + x^5 + x^3 + x^2 + x)\ \text{mod}\ (x^8 + x^4 + x^3 + x + 1) \\ = x^7 + x^5 + x^4 + x = \{1011\ 0010\}$
- > 0001 0101⊕1011 0010⊕0100 0110⊕1010 0110=0100 0111=47

4. Add Round Key

XOR state with 128-bits of the round key Key=0f1571c947d9e8590cb7add6af7f6798 Text=0123456789abcdeffedcba9876543210

CSE571S

AES Key Expansion

Use four byte words called w_i . Subkey = 4 words. For AES-128:

- □ First subkey $(w_3, w_2, w_1, w_0) =$ cipher key
- Other words are calculated as follows:

$$w_i = w_{i-1} \oplus w_{i-4}$$

for all values of i that are not multiples of 4.

- For the words with indices that are a multiple of 4 (w_{4k}) :
- 1. RotWord: Bytes of w_{4k-1} are rotated left shift (nonlinearity)
- 2. SubWord: SubBytes fn is applied to all four bytes. (Diffusion)
- 3. The result r_{sk} is XOR'ed with w_{4k-4} and a round constant r_{conk} (breaks Symmetry):

 $w_{4k} = r_{sk} \oplus w_{4k-4} \oplus r_{conk}$

For AES-192 and AES-256, the key expansion is more complex.

Washington University in St. Louis

AES Example Key Expansion

Key=0f1571c947d9e8590cb7add6af7f6798

ſ	Key Words	Auxiliary Function	
	w0 = 0f 15 71 c9	RotWord(w3)= 7f 67 98 af = x1	
	wl = 47 d9 e8 59	SubWord(x1)= d2 85 46 79 = y1	
	$w^2 = 0c b7 ad d6$	Rcon(1)= 01 00 00 00	
	w3 = af 7f 67 98	yl ⊕ Rcon(1)= d3 85 46 79 = z1	
	w4 = w0 ⊕ z1 = dc 90 37 b0	RotWord(w7)= 81 15 a7 38 = x2	
lst	w5 = w4 ⊕ w1 = 9b 49 df e9	SubWord(x4)= 0c 59 5c 07 = y2	
	w6 = w5 ⊕ w2 = 97 fe 72 3f	Rcon(2)= 02 00 00 00	
	w7 = w6 ⊕ w3 = 38 81 15 a7	y2 ⊕ Rcon(2)= 0e 59 5c 07 = z2	
	w8 = w4 ④ z2 = d2 c9 6b b7	RotWord(w11)= ff d3 c6 e6 = x3	
2nd	w9 = w8 ⊕ w5 = 49 80 b4 5e	SubWord(x2)= 16 66 b4 8e = y3	
2110	w10 = w9 ⊕ w6 = de 7e c6 61	Rcon(3)= 04 00 00 00	
	wl1 = w10 ⊕ w7 = e6 ff d3 c6	y3 ⊕ Rcon(3)= 12 66 b4 8e = z3	

10th

AES Example Encryption

Start of round	After SubBytes	After ShiftRows	After MixColumns	Round Key
01 89 fe 76				Of 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
Oe ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38
36 72 6b 2b	05 40 7f fl	40 7f f1 05	e4 8e 16 51	90 49 fe 81
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 le 52	b7 5e 61 c6

01+0f=0e 89+47=ce

5-12

AES Example Avalanche

Round		Number of bits that differ
	0123456789abcdeffedcba9876543210	1
	0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588	1
	0f3634aece7225b6f26b174ed92b5588	
1	657470750fc7ff3fc0e8e8ca4dd02a9c	20
•	c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294	58
2	fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58
3	7115262448dc747e5cdac7227da9bd9c	59
5	ec093dfb7c45343d689017507d485e62	59
4	f867aee8b437a5210c24c1974cffeabc	61
-	43efdb697244df808e8d9364ee0ae6f5	01
5	721eb200ba06206dcbd4bce704fa654e	68
5	7b28a5d5ed643287e006c099bb375302	08
6	0ad9d85689f9f77bc1c5f71185e5fb14	64
0	3bc2d8b6798d8ac4fe36a1d891ac181a	04
7	db18a8ffa16d30d5f88b08d777ba4eaa	67
	9fb8b5452023c70280e5c4bb9e555a4b	07
8	f91b4fbfe934c9bf8f2f85812b084989	65
•	20264e1126b219aef7feb3f9b2d6de40	05
9	cca104a13e678500ff59025f3bafaa34	61
	b56a0341b2290ba7dfdfbddcd8578205	01
10	ff0b844a0853bf7c6934ab4364148fb9	58
10	612b89398d0600cde116227ce72433f0	56

Washington University in St. Louis

CSE571S

AES Decryption

Ciphertext

Add round key

Inverse sub bytes

Inverse shift rows

Inverse mix cols

Add round key

Inverse sub bytes

Inverse shift rows

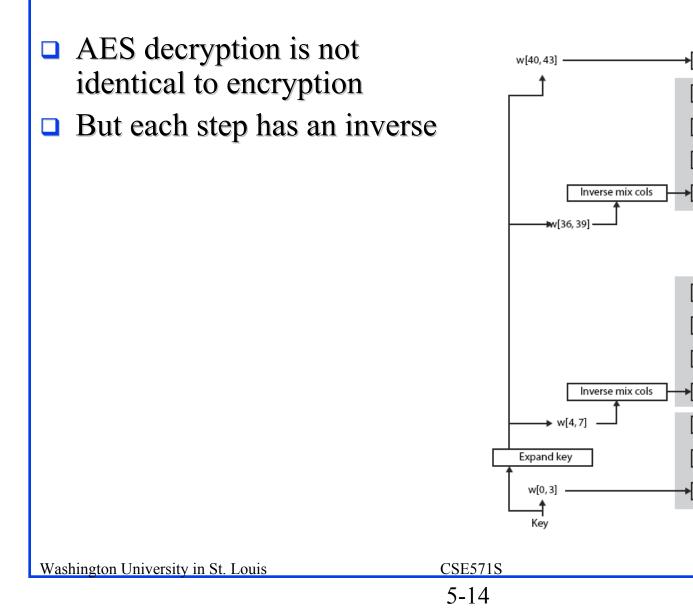
Inverse mix cols

Add round key

Inverse sub bytes

Inverse shift rows

Add round key


Plaintext

Round

Round 9

Round 10

©2014 Raj Jain

- 1. AES encrypts 128 bit blocks with 128-bit, 192-bit or 256-bit keys using 10, 12, or 14 rounds, respectively.
- 2. Is not a Feistel cipher \Rightarrow All 128 bits are encrypted
- 3. Each round = 4 steps of SubBytes, ShiftRows, MixColumns, and AddRoundKey.
- 4. Last round has only 3 steps. No MixColumns.
- 5. Decryption is not the same as encryption (as in DES). Decryption consists of inverse steps.

Homework 5

- Given the plaintext [0001 0203 0405 0607 0809 0A0B 0C0D 0E0F] and the key [0101 0101 0101 0101 0101 0101 0101 0101]
- a. Show the original contents of state, displayed as a 4x4 matrix.
- b. Show the value of state after initial AddRoundKey.
- c. Show the value of State after SubBytes.
- d. Show the value of State after ShiftRows.
- e. Show the value of State after MixColumns. *Show only the first row for step e.*