Key Management and Distribution

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

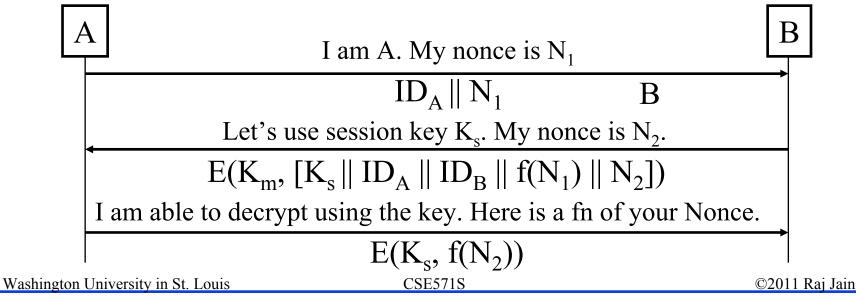
Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

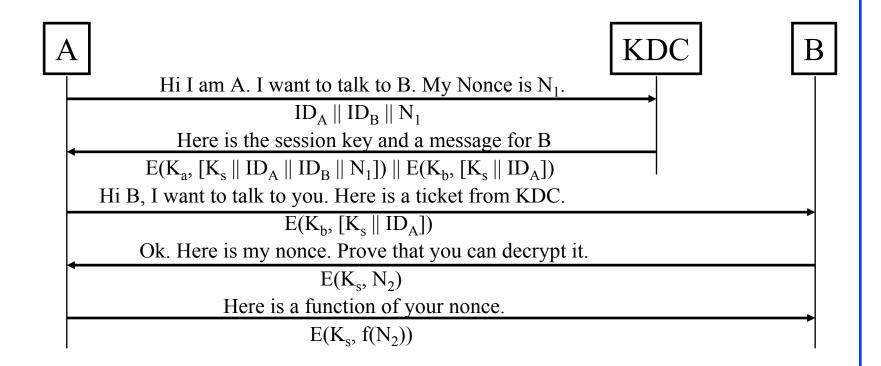
CSE571S

- 1. Distribution of Private Keys
- 2. Distribution of Public Keys
- 3. Public Key Infrastructure: PKI and PKIX
- 4. X.509 Certificates
- 5. Certificate revocation


These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

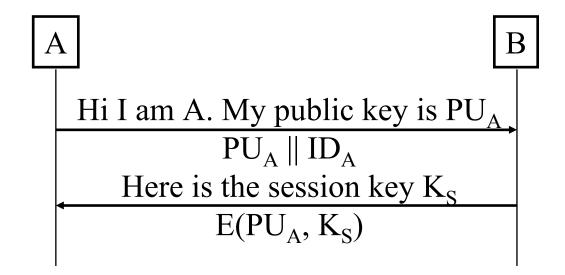
CSE571S


Key Distribution

- Symmetric schemes require parties to share a secret key
 - > n Parties ⇒ n(n-1)/2 pairs ⇒ n(n-1)/2 keys
- Public key schemes require parties to acquire valid public keys. How to trust a public key?
- Once "master" secret keys are setup, they are used only to exchange "session" secret keys.
 - > Session keys are used for a short time and then discarded.

Key Distribution Using KDC

- Central authority, called "Key Distribution Center" (KDC)
- Everyone has a shared secret key with KDC


☐ Hierarchies of KDC's required for large networks

Washington University in St. Louis

CSE571S

Key Distribution Using Public Keys

- Public key cryptosystems are inefficient
 - > So almost never used for direct data encryption
 - > Rather used to encrypt secret keys for distribution

☐ This scheme is subject to man in the middle attack

Washington University in St. Louis

CSE571S

Secret Key Distribution with Confidentiality and Authentication

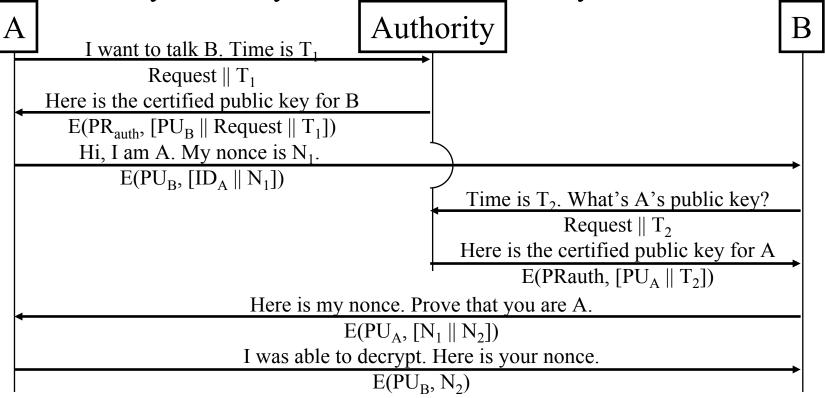
 $[A] \begin{tabular}{|c|c|c|c|c|} \hline $Hi\ I\ am\ A.\ My\ nonce\ is\ N_1. \\ \hline $E(PU_B,\ [N_1\ ||\ ID_A])$ \\ \hline Here\ is\ my\ nonce.\ Prove\ that\ you\ have\ private\ key\ for\ A \\ \hline $E(PU_A,\ [N_1\ ||\ N_2])$ \\ \hline $Here\ is\ your\ nonce.$ \\ \hline $E(PU_B,\ N_2)$ \\ \hline Now\ that\ we\ know\ each\ other.\ Let's\ use\ session\ key\ K_S. \\ \hline $E(PU_B,\ E(PR_A,\ K_S))$ \\ \hline \end{tabular}$

Washington University in St. Louis

CSE571S

Hybrid Key Distribution

- □ Retain use of private-key KDC
- □ Shares secret master key with each user
- □ Distributes session key using master key
- Public-key used to distribute master keys
 - > Especially useful with widely distributed users
- Rationale
 - > Performance
 - > Backward compatibility

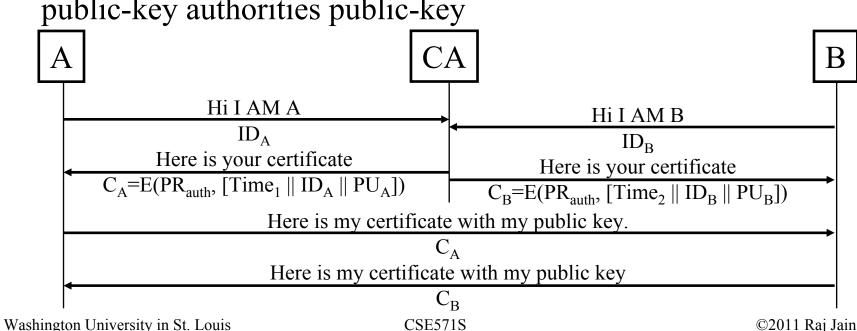

Washington University in St. Louis

CSE571S

Distribution of Public Keys

- 1. Public announcement: Forgery possible
- 2. Publicly available directory: Message can be tampered with.

Public-key authority: users know public key for the directory


Requires real-time access to directory when keys are needed

Washington University in St. Louis

CSE571S

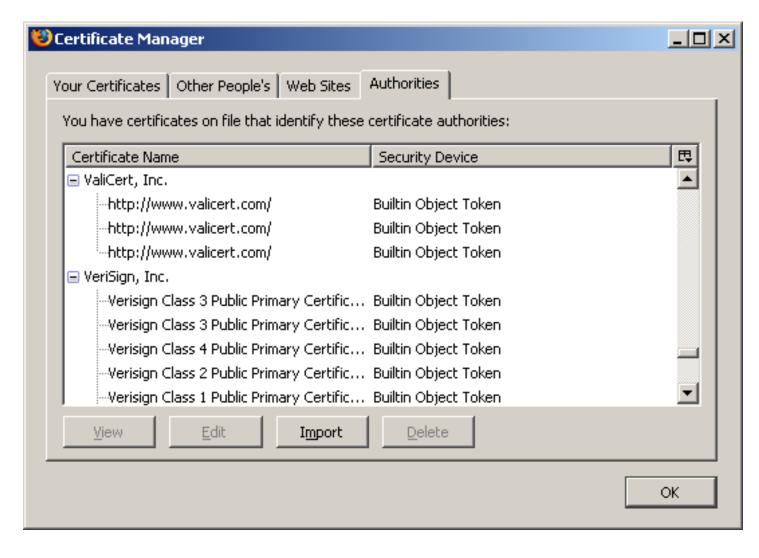
Public-Key Certificates

- Certificates allow key exchange without real-time access to public-key authority
- A certificate binds **identity** to **public key**
- All contents **signed** by a trusted Public-Key or Certificate Authority (CA)
- Can be verified by anyone who knows the public-key authorities public-key

00 N MAIN ST

FFERSON CITY, MO 65101

Jok B. Dar

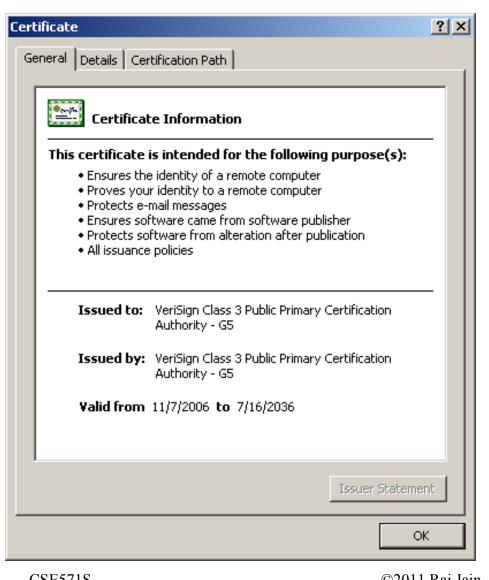

PKI, PKIX, and X.509

- □ PKI: Infrastructure to find public keys
 - > S/MIME, PGP, SSL use asymmetric cryptography and make use of PKI
 - > Certificate authorities
 - > Standards for certificates
- X.509: ISO standard for Certificate formats
- □ PKIX is the IETF group on PKI
- □ PKIX adopted X.509 and a subset of its options
- □ PKIX is a "Profile" of X.509
- □ TLS, IPSec, SSH, HTTPS, Smartcard, EAP, CableLabs, use X.509

Washington University in St. Louis

CSE571S

Root Certificates



Washington University in St. Louis

CSE571S

Sample X.509 Certificate

Internet Explorer

Washington University in St. Louis

CSE571S

X.509 Sample (Cont) Field Value Version. **V3** Serial number. 18 da d1 9e 26 7d e8 bb 4a 21... Signature algorithm sha1RSA Issuer VeriSign Class 3 Public Primary ... Valid from Tuesday, November 07, 2006 ... Valid to Wednesday, July 16, 2036 6:... Subject VeriSign Class 3 Public Primary Public kevi RSA (2048 Bits). VJ. version Serial number 18 da d1 9e 26 7d e8 bb 4a 21... |Signature algorithm sha1RSA Tssuer VeriSign Class 3 Public Primary ... Valid from Tuesday, November 07, 2006 ... Valid to Wednesday, July 16, 2036 6:... Subject VeriSign Class 3 Public Primary ... Public key RSA (2048 Bits) Washington University in St. Louis CSE571S ©2011 Raj Jain

X.509 Certificates


- Issued by a Certification Authority (CA), containing:
 - > Version V (1, 2, or 3)
 - > Serial number SN (unique within CA) identifying certificate
 - > Signature algorithm identifier AI
 - > Issuer X.500 name CA)
 - > Period of validity TA (from to dates)
 - > Subject X.500 name A (name of owner)
 - > Subject public-key info Ap (algorithm, parameters, key)
 - > Issuer unique identifier (v2+)
 - > Subject unique identifier (v2+)
 - > Extension fields (v3)
 - > Signature (of hash of all fields in certificate)
- □ Notation CA<<A>> denotes certificate for A signed by CA

Washington University in St. Louis

CSE571S

CA Hierarchy

- □ CA's must form a hierarchy
- Each CA has certificates for clients (forward) and parent (backward)
- Each client trusts parents certificates
- Enable verification of any certificate from one CA by user of all other CAs in hierarchy

X.509 Version 3

- Additional information is needed in a certificate
 - > Email/URL, Policy details, Usage constraints
- Rather than explicitly naming new fields defined a general extension method
- Extensions consist of:
 - > Extension identifier
 - > Criticality indicator
 - > Extension value

Washington University in St. Louis

CSE571S

X.509 Extensions

- Authority Key Identifier: Serial # of CA's key
- Subject Key Identifier: Uniquely identifies the subjects key. Serial # or hash.
- Key Usage: Allowed usage email, business, ...
- □ Private Key Usage Period: Timestamps for when key can be used (similar to validity)
- Certificate Policies
- □ Policy Mappings: from Issuer's domain to subject's domain
- □ Subject Alt Name: Alternative name. DNS.
- Subject Directory Attributes: Other attributes

Certificate Revocation

- May need to revoke before expiry, for example,
 - a. User's private key is compromised
 - b. User is no longer certified by this CA
 - c. CA's certificate is compromised
- □ CA's maintain list of revoked certificates
 - Certificate Revocation List (CRL)
- Users should check certificates with CA's CRL
 - \triangleright Too much traffic on the net \Rightarrow Not used
- **□** On-Line Revocation Server (OLRS):
 - On-line Certificate Status Protocol (OCSP) [RFC 2560]
 - Provides current information
 - Also allows chaining of OCSP responders

Washington University in St. Louis

CSE571S

Entrusted Certificates

Field	Value
Version	V3
ESerial number	75 0e 40 ff 97 f0 47 ed f5 56 c
Signature algorithm	md5RSA
E Issuer	VeriSign Commercial Software
☐ Valid from	Tuesday, January 30, 2001 7:
🔚 Valid to	Thursday, January 31, 2002 6
Subject	Microsoft Corporation, Microso
Public key	RSA (1024 Bits)
Basic Constraints	Subject Type=End Entity, Pat
😈 Key Usage	Digital Signature, Key Encipher
😈 Authority Key Identifier	KeyID=7b 96 e4 d1 43 fd 68 9
😈 Basic Constraints	Subject Type=End Entity, Pat
😈 Certificate Policies	[1]Certificate Policy:Policy Ide
5 SpcFinancialCriteria	Financial Information=Availabl
📆 Key Usage Restriction	[1]Cert PolicyId=1.3.6.1.4.1
SpcSpAgencyInfo	Policy Information:URL=https:
Thumbprint algorithm	sha1
Thumbprint	7d 7f 44 14 cc ef 16 8a df 6b f
📆 Friendly name	Fraudulent, NOT Microsoft
x Extended Error Information	Revocation Status : The certifi
sity in St. Louis	CSE571S
nty in ot. Douis	1.4.10

- 1. Master keys are used to exchange session keys. Session keys are used for a short duration and then discarded.
- 2. Secret keys are distributed via a **KDC** or via public keys
- 3. Public keys are distributed via **X.509** based **PKI**. Browsers have a built-in list of **root CAs**
- 4. PKIX is a profile of the X.509 PKI standard
- 5. X.509 uses X.500 names. DNS names in Alternate Name field.
- 6. Certificate Revocation Lists (CRLs) are used to revoke a certificate. On-line certification Status Protocol (OCSP) can be used to check revocation

Washington University in St. Louis

CSE571S

Homework 14A

- Study the root certificates in your Internet Explorer Find the certificate for "Thawte Premium Server CA"
 - a. What is the X.500 name of the CA?
 - b. What version of X.509 does this CA use?
 - c. What are the uses of the public key in this certificate?
 - d. What signature algorithm is used to sign this certificate?
 - e. What are the last 4 bytes of the public key

Washington University in St. Louis

CSE571S

Homework 14B

You will receive a signed email from the TA with his digital certificate. Import this certificate in your contacts list. (Use help feature on your email software for details. See instructions for Outlook and Gmail). Now send an encrypted signed email to TA with the subject line of "CSE571S Encrypted Signed Mail Homework 14B"

You will need a certificate for yourself too.

Getting your Certificate:

□ Use <u>Internet Explorer</u> to request and collect a free email certificate from:

http://www.comodo.com/home/email-security/free-email-certificate.php

- □ After you have collected the certificate, in Internet Explorer go to Tools \rightarrow Internet Options \rightarrow Contents \rightarrow Certificates \rightarrow Personal
- Select your certificate and export it to a file.

 Select "Yes Export the private key" click next

 Select "Include all certificates in the certification path"

 Select "Enable strong protection"

 Do not select "Delete the private key if the export is successful"

 Save it with a password of your choice.
- Import this certificate in Outlook as follows:
 Tools → Options → Security → Import/Export
- □ Browse to your certificate file and add it.

Washington University in St. Louis

CSE571S

☐ If you use <u>Firefox</u>, use the following procedure to request and collect a free email certificate from:

http://www.comodo.com/home/email-security/free-email-certificate.php

- □ After you have collected the certificate, in Firefox go to Tools → Options → Advanced → Encryption → View Certificates → Your Certificates
- Select your certificate and backup to a file. Save it with a password of your choice.
- Import this certificate in Outlook as follows:
 Tools → Options → Security → Import/Export
- Browse to your certificate file and add it.

 Note: You have to use the same browser to collect the certificate from Comodo that you used to request the certificate.

Washington University in St. Louis

CSE571S

Importing Other's Certificates in Outlook:

- □ In Outlook, open the signed message received from TA. In the message window, right click on the name in the "From field" and select "save as outlook contact"
- □ This will open a new contact window. In that window, click on the "certificates" tab.
- You will see the certificate listed there.
- Save this contact in your contacts list.
- When you reply or send email to this contact, you can enable the security options for encryption and signatures by:
 View → Options → Security Options
 Select Encrypt Message or Add Digital Signature or both
 Select Security Settings: <Automatic>

Washington University in St. Louis

CSE571S

Gmail Instructions:

- □ The certificate will show up as an attachment name smime.p7s
- Download and save this attachment on your computer.
- □ Transfer this file to the computer where you have an outlook email.
- Manually create a new contact entry in outlook with proper name and email address.
- Open this contact entry. Go to certificate panel and import. Select all files *.* and select the file smime.p7s
- Save and close the entry.
- To send an email with your Gmail address in the from field, you will need to create a new email account in Outlook with the corresponding Gmail address in the from field. Outlook allows email security. Gmail does not.

Washington University in St. Louis

CSE571S

Sending Encrypted and Signed Messages w Outlook:

- ☐ You can reply to the TA's email with a signed encrypted message. Content of the reply is not important.
- □ Before sending the message, on the message window,
 Select View → Options → Security Settings
 Select encryption and signature
 Now send the message.

Washington University in St. Louis

CSE571S