Message Authentication Codes

Was this message altered?

Did he really send this?

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

- 1. Message Authentication
- 2. MACS based on Hash Functions: HMAC
- 3. MACs based on Block Ciphers: DAA and CMAC
- 4. Authenticated Encryption: CCM and GCM
- Pseudorandom Number Generation Using Hash Functions and MACs

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington	University	in	St.	Louis
0	<i>.</i>			

Message Security Requirements

- Disclosure
- Traffic analysis
- □ Masquerade
- Content modification
- Sequence modification
- **Timing modification**
- □ Source repudiation
- Destination repudiation

Message Authentication = Integrity + Source Authentication

Public-Key Authentication and Secrecy B's Public A's Private Message В Key Key Double public key encryption provides authentication and integrity. Double public key \Rightarrow Very compute intensive Crypto checksum (MAC) is better. Based on a secret key and the message. Can also encrypt with the same or different key. Source A Destination B М Compare MAC(K, M)(a) Message authentication Washington University in St. Louis **CSE571S** ©2011 Raj Jain 12-4

MAC Properties

- □ A MAC is a cryptographic checksum
 - $MAC = C_{K}(M)$
 - Condenses a variable-length message M using a secret key
 - > To a fixed-sized authenticator
- □ Is a many-to-one function
 - > Potentially many messages have same MAC
 - But finding these needs to be very difficult
- □ Properties:
 - 1. It is infeasible to find another message with same MAC
 - 2. MACs should be uniformly distributed
 - 3. MAC should depend equally on all bits of the message

Security of MACs

- **Brute-force** attacks exploiting
 - > Strong collision resistance hash have cost $2^{m/2}$
 - MACs with known message-MAC pairs
 Can either attack keyspace (cf key search) or MAC
 128-bit hash looks vulnerable, 160-bits better

HMAC Design Objectives

- \Box Keyed Hash \Rightarrow includes a key along with message
- □ HMAC is a general design. Can use any hash function \Rightarrow HMAC-MD5, HMAC-AES
- Uses hash functions without modifications
- □ Allow for easy replace-ability of embedded hash function
- Preserve original performance of hash function without significant degradation
- Uses and handles keys in a simple way.
- Has well understood cryptographic analysis of authentication mechanism strength

HMAC RFC2104 K⁺ ipad Uses hash function on the message: $HMAC_{K}(M) =$ b bits b bits b bits $H[(K^+ \oplus opad) || H[(K^+ \oplus ipad) || M)]]$ Y₀ Y_1 Y_{L-1} Si > Where $K^+ = \text{key padded to b-bits}$ n bits or hashed to b-bits if |k| > bIV-Hash n bits \rightarrow b = block size for the hash K opad $H(S_i \parallel M)$ > opad, ipad are constants b bits pad to b bits > ipad = $36^{b/8}$, opad = $5C^{b/8}$ Any hash function can be used S_o ▶ E.g., MD5, SHA-1, RIPEMD-160, $IV_{\underline{n} \text{ bits}}$ Hash Whirlpool n bits Proved that security of HMAC relates HMAC(K,M) to that of the underlying hash algorithm

Using Symmetric Ciphers for MACs

Can use any block cipher chaining mode and use final block as a MAC

Data Authentication Algorithm (DAA) = DES-CBC

- > Using IV=0 and zero-pad of final block
- □ For single block message X, T=MAC(K, X) \Rightarrow T=MAC(K,X||(X⊕T))

Cipher-based Message Authentication Code (CMAC)

- Black and Rogaway fixed DAA problem by using 3 keys. Iwata updated by generating 3 keys from a single key.
- □ Adopted by NIST SP800-38B
- Two n-bit keys from a k-bit encryption key
- $\Box L=E(K,0^n)$
- \Box K₁=L·x
- $\Box K_2 = L \cdot x^2$
- \Box ·=Multiplication in GF(2ⁿ)
- Using a irreducible polynomial with min 1's

Washington University in St. Louis

- > $x^{64}+x^4+x^3+x+1$ for 64 bits
- > $x^{128}+x^7+x^2+x+1$ for 128 bits

12-10

Authenticated Encryption

- □ Confidentiality+Integrity:
- 1. Hash-then-encrypt: E(K, (M || H(M)))
- 2. MAC-then-encrypt: $E(K_2, (M \parallel MAC(K_1, M)))$ Used in SSL/TLS
- 3. Encrypt-then-MAC: (C=E(K₂, M), T=MAC(K₁, C) Used in IPsec
- 4. Encrypt-and-MAC: $(C=E(K_2, M), T=MAC(K_1, M))$ Used in SSH
- But security vulnerabilities with all these
- □ NIST fixed these vulnerabilities with CCM and GCM

CCM

- Counter with Cipher Block Chaining-MAC
- □ NIST SP 800-38C for WiFi
- Algorithmic ingredients
 - > AES encryption algorithm
 - > CTR mode of operation
 - CMAC authentication algorithm
- Single key for both encryption
 & MAC
- □ 2 passes over plaintext:MAC+E
- □ Associate data = headers in clear

Washington University in St. Louis

Galois/Counter Mode (GCM)

- NIST standard SP 800-38D, parallelizable
- □ Uses two functions:
 - GHASH a keyed hash function
 - GCTR CTR mode with incremented counter
- GHASH: plaintext xor'ed with feedback and multiplied with key in GF(2¹²⁸) to generate authenticator tag
- □ MAC-only mode also
- Y_i in figs (a) and (b) are not related.
 Washington University in St. Louis

PRNG Using Hash and MACs

- **Essential elements of Pseudo-Random Number generation:**
 - Seed value
 - > Deterministic algorithm
- Seed must be known only as needed
- □ PRNG can be based on
 - 1. Encryption algorithm
 - 2. Hash function (ISO18031 & NIST SP 800-90)
 - 3. MAC (NIST SP 800-90)

PRNG using a Hash Function

□ SP800-90 and ISO18031

- > Take seed V
- > Repeatedly add 1
- ≻ Hash V
- Use n-bits of hash as random value
- □ Secure if good hash used

(a) PRNG using cryptographic hash function

PRNG using a MAC

□ SP800-90, IEEE 802.11i, TLS

- > Use key
- > Input based on last hash in various ways

Summary

- Message authentication = Integrity + Source Authentication (with or without encryption)
- 2. Double public key encryption can be used but complex \Rightarrow Hash with a secret key
- 3. HMAC is a general procedure usable with any hash function \Rightarrow HMAC-MD5, HMAC-AES
- 4. Data Authentication Algorithm (DAA) was found insecure \Rightarrow Fixed by CMAC using keys derived from a single key
- 5. Authenticated Encryption:
 - 1. CCM = CMAC + Counter mode
 - 2. GCM = Multiplication in $GF(2^{128})$ + Counter mode
- 6. Pseudorandom Number Generation (PRNG) using Hash Functions and MACs

Homework 12

- 12.6 There are four general approaches in authenticated encryption: HtE, MtE, EtM, and E&M.
- A. Which approach is used for CCM?
- B. Which approach is used for GCM?