Other Public-Key Cryptosystems

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

- 1. Diffie-Hellman Key Exchange
- 2. ElGamal Cryptosystem
- 3. Elliptic Curve Arithmetic
- 4. Elliptic Curve Cryptography
- 5. Pseudorandom Number Generation using Asymmetric Cipher

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Diffie-Hellman Key Agreement

- Allows two party to agree on a secret key using a public channel
- □ A selects q=large prime, and α =a primitive root of q
- □ A selects a random $\# X_A$, B selects another random $\# S_B$

$$X_{A}, \alpha, q$$

$$Y_{A} = \alpha^{X_{A}} \mod q$$

$$Y_{AB} = Y_{B}^{X_{A}} \mod q$$

$$Y_{B} = \alpha^{X_{B}} \mod q$$

$$Y_{B} = \alpha^{X_{B}} \mod q$$

$$Y_{AB} = Y_{A}^{X_{B}} \mod q$$

Y_{AB} = g<sup>X_A X_B mod q
 Eavesdropper can see Y_A, α, q but cannot compute X_A
 Computing X_A requires discrete logarithm - a difficult problem
</sup>

Diffie-Hellman (Cont)

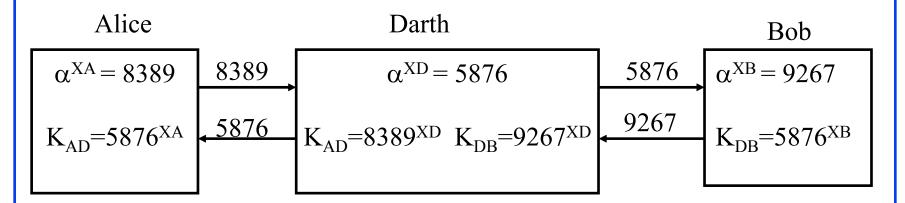
Example: α =5, q=19

- > A selects 6 and sends $5^6 \mod 19 = 7$
- > B selects 7 and sends $5^7 \mod 19 = 16$
- > A computes $K = 16^6 \mod 19 = 7$
- > B computes $K = 7^7 \mod 19 = 7$
- □ Preferably (q-1)/2 should also be a prime.

□ Such primes are called safe prime.

Man-in-Middle Attack on Diffie-Hellman

Diffie-Hellman does not provide authentication

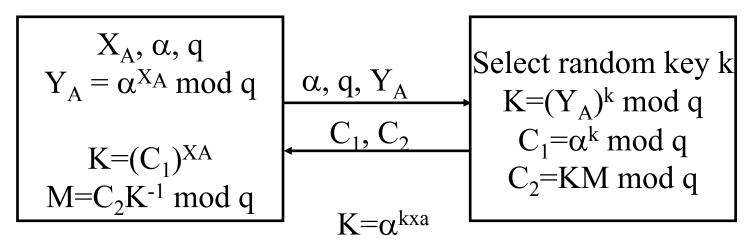


X can then intercept, decrypt, re-encrypt, forward all messages between Alice & Bob

□ You can use RSA authentication and other alternatives

ElGamal Cryptography

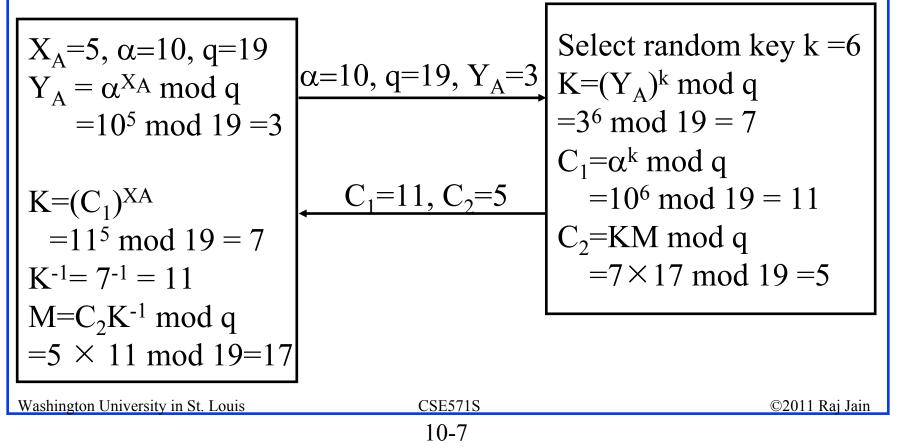
- Public-key cryptosystem related to D-H
- Uses exponentiation in a finite (Galois)
- Security based difficulty of computing discrete logarithms
- □ X_A is the private key, { α , q, Y_A } is the public key



□ k must be unique each time. Otherwise insecure.

ElGamal Cryptography Example

- □ Use field GF(19) q=19 and α =10
- □ Alice chooses $x_A = 5$,
- □ Bob wants to sent message M=17, selects a random key k=6



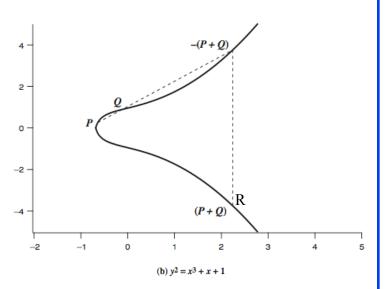
Elliptic Curve Cryptography

- Majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- Imposes a significant load in storing and processing keys and messages
- □ An alternative is to use elliptic curves
- Offers same security with smaller bit sizes
- □ Newer, but not as well analyzed

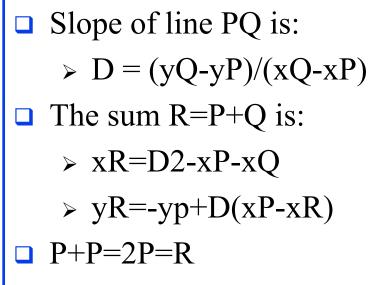
Elliptic Curves over Real Numbers

- An elliptic curve is defined by an equation in two variables x & y,
 - > $y^2 = x^3 + ax + b$
 - Where x, y, a, b are all real numbers
 - > $4a^3+27b^2≠0$
- The set of points E(a, b) forms an abelian group with respect to "addition" operation defined as follows:
 - > P+Q is reflection of the intersection R
 - > O (Infinity) acts as additive identity
 - > To double a point P, find intersection of tangent and curve
 - > Closure: P+Q ε E
 - > Associativity: P+(Q+R) = (P+Q)+R
 - > Identity: P+O=P
 - > Inverse: -P ε E
 - > Commutative: P+Q = Q+P

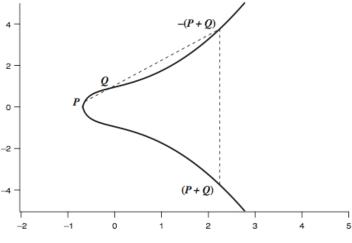
10-9



Elliptic Curve over Real Numbers (Cont)



$$x_R = \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P$$
$$y_r = \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P$$



(b) $y^2 = x^3 + x + 1$

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are defined over GF
 - > Prime curves: E_p (a, b) defined over Z_n

□ Use integers modulo a prime

• Easily implemented in software

> **Binary curves**: E_{2m} (a, b) defined over $GF(2^n)$

□ Use polynomials with binary coefficients

• Easily implemented in hardware

Cryptography: Addition in elliptic = multiplication in Integer

- Repeated addition = Exponentiation
- > Easy to compute Q=P+P+...+P=kP, where Q, P ε E

Hard to find k given O P (Similar to discrete log)

> Hard to find K g	given Q, P (Similar u	o discrete log
Washington University in St. Louis	CSE571S	

©2011 Raj Jain

Finite Elliptic Curve Example

- □ $E_p(a,b)$: y²=x³+ax+b mod p □ $E_{23}(1,1)$: y²=x³+x+1 mod 23
- $\Box Consider only + ve x and y$
- \Box R=P+Q
 - > $x_R = (\lambda^2 x_P x_Q) \mod p$
 - > $y_R = (\lambda(x_P x_R) y_P) \mod p$
 - > Where

$$\lambda = \begin{cases} \left(\frac{y_Q - y_P}{x_Q - x_P}\right) \mod p & \text{if } P \neq Q \\ \left(\frac{3x_P^2 + a}{2y_P}\right) \mod p & \text{if } P = Q \end{cases}$$

$$\square \text{ Example: } (3,10) + (9,7)$$

$$\lambda = \left(\frac{3(3^2) + 1}{2 \times 10}\right) \mod 23 = \frac{1}{4} \mod 23 = 6$$

$$x_R = (6^2 - 3 - 3) \mod 23 = 7$$

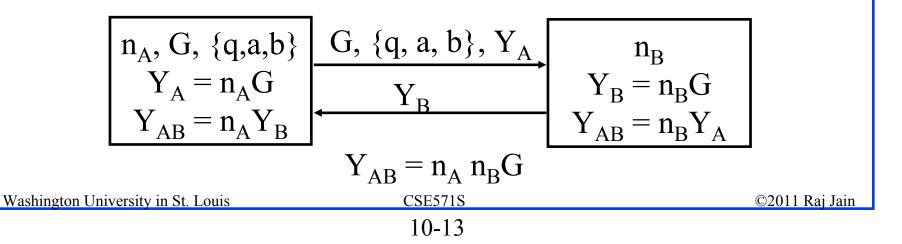
$$y_R = (6(3 - 7) - 10) \mod 23 = 12$$

Table 10.1 Points on the Elliptic Curve $E_{23}(1, 1)$

(0,1)	(6, 4)	(12, 19)
(0, 22)	(6, 19)	(13,7)
(1,7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9,7)	(17, 20)
(3, 13)	(9, 16)	(18,3)
(4,0)	(11, 3)	(18, 20)
(5,4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)

ECC Diffie-Hellman

- **Select a suitable curve** E_q (a, b)
- □ Select base point $G = (x_1, y_1)$ with large order n s.t. nG=0
- □ A & B select private keys $n_A < n$, $n_B < n$
- □ Compute public keys: $Y_A = n_A G$, $Y_B = n_B G$
- □ Compute shared key: $K=n_AY_B$, $K=n_BY_A$
 - > Same since $K=n_An_BG$
- □ Attacker would need to find K, hard



ECC Encryption/Decryption

- Several alternatives, will consider simplest
- □ Select suitable curve & point G
- Encode any message M as a point on the elliptic curve P_m
- **\Box** Each user chooses private key $n_A < n$
- **Computes public key** $P_A = n_A G$
- **D** Encrypt $P_m : C_m = \{ kG, P_m + kP_b \}, k random$
- \Box Decrypt C_m compute:

$$P_{m}+kP_{b}-n_{B}(kG) = P_{m}+k(n_{B}G)-n_{B}(kG) = P_{m}$$

ECC Security

- □ Relies on elliptic curve logarithm problem
- □ Can use much smaller key sizes than with RSA etc
- □ For equivalent key lengths computations are roughly equivalent
- Hence for similar security ECC offers significant computational advantages

	Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)	
	56	112	512	
	80	160	1024	
	112	224	2048	
	128	256	3072	
	192	384	7680	
	256	512	15360	
Washington University in St. Louis		CSE571S		©2011 I
		10-15		

PRNG based on Asymmetric Ciphers

- Asymmetric encryption algorithms produce apparently random output
- Hence can be used to build a pseudorandom number generator (PRNG)
- □ Much slower than symmetric algorithms
- Hence only use to generate a short pseudorandom bit sequence (e.g., key)

PRNG based on RSA Micali-Schnorr PRNG using RSA in ANSI X9.82 and ISO 18031 $seed = x_0$ n, e, r, k n, e, r, k n, e, r, k Encrypt Encrypt Encrypt $y_2 = x_1^e \mod n$ $y_3 = x_2^e \mod n$ $y_1 = x_0^e \mod n$ $x_1 = r \text{ most}$ $x_2 = r \text{ most}$ $x_3 = r \text{ most}$ significant bits significant bits significant bits $z_1 = k \text{ most}$ $z_2 = k \text{ most}$ $z_3 = k \text{ most}$ significant bits significant bits significant bits Washington University in St. Louis **CSE571S** ©2011 Raj Jain

PRNG based on ECC

- Dual elliptic curve PRNG
 - > NIST SP 800-9, ANSI X9.82 and ISO 18031
- □ Some controversy on security /inefficiency
- □ Notation: x(P) = x coordinate of P. $lsb_i(x) = i$ least sig bits of x
- □ Algorithm

```
for i = 1 to k do

set s_i = x(s_{i-1} P)

set r_i = lsb_{240} (x(s_i Q))

end for

return r_1, . . , r_k

Only use if just have ECC
```


- 1. Diffie-Hellman key exchange allows creating a secret in public based on exponentiation
- 2. ElGamal cryptography uses D-H
- 3. Elliptic Curve cryptography is based on defining addition of points on an elliptic curve in GF(p) or GF(2ⁿ)
- 4. Public key cryptography (both RSA and ECC) can also be used to generate cryptographically secure pseudorandom numbers.

Washington University in St. Louis

CSE571S

