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Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse571-11/
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OverviewOverview

1. Public Key Encryption
2. Symmetric vs. Public-Key
3. RSA Public Key Encryption
4. RSA Key Construction
5. Optimizing Private Key Operations
6. RSA Security

These slides are based partly on Lawrie BrownLawrie Brown’’s s slides supplied with  William Stallings’s 
book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011.



9-3
©2011 Raj JainCSE571SWashington University in St. Louis

Public Key EncryptionPublic Key Encryption
 Invented in 1975 by Diffie and Hellman at Stanford
 Encrypted_Message = Encrypt(Key1, Message)
 Message = Decrypt(Key2, Encrypted_Message)

 Keys are interchangeable:

 One key is made public while the other is kept private
 Sender knows only public key of the receiver Asymmetric

Text Ciphertext Text

Key1 Key2

Text Ciphertext Text

Key2 Key1
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Public Key Encryption ExamplePublic Key Encryption Example
 Rivest, Shamir, and Adleman at MIT
 RSA: Encrypted_Message = m3 mod 187
 Message = Encrypted_Message107 mod 187
 Key1 = <3,187>, Key2 = <107,187>
 Message = 5
 Encrypted Message = 53 = 125
 Message = 125107 mod 187 = 5

= 125(64+32+8+2+1) mod 187 
= {(12564 mod 187)(12532 mod 187)...
(1252 mod 187)(125 mod 187)} mod 187
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Symmetric vs. PublicSymmetric vs. Public--KeyKey
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PublicPublic--Key Authentication and SecrecyKey Authentication and Secrecy

 A encrypts the message with its private key and then with B’s 
public key

 B can decrypt it with its private key and A’s public key
 No one else can decrypt Secrecy
 No one else can send such a message

B is assured that the message was sent by A
Authentication

Message
A’s Private

Key
B’s Public

KeyAA BB
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PublicPublic--Key ApplicationsKey Applications

 3 Categories:
 Encryption/decryption (provide secrecy)
 Digital signatures (provide authentication)
 Key exchange (of session keys)

 Some algorithms are suitable for all uses, others are specific to 
one



9-8
©2011 Raj JainCSE571SWashington University in St. Louis

PublicPublic--Key RequirementsKey Requirements

 Need a trapdoor one-way function
 One-way function has

 Y = f(X) easy  
 X = f–1(Y) infeasible

 A trap-door one-way function has
 Y = fk(X) easy, if k and X are known
 X = fk

–1(Y) easy, if k and Y are known
 X = fk

–1(Y) infeasible, if Y known but k not known
 A practical public-key scheme depends on a suitable trap-door 

one-way function
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Security of Public Key SchemesSecurity of Public Key Schemes
 Like private key schemes brute force Like private key schemes brute force exhaustive searchexhaustive search attack attack 

is always theoretically possible is always theoretically possible 
 But keys used are too large (>512bits) But keys used are too large (>512bits) 
 Security relies on a Security relies on a large enoughlarge enough difference in difficulty difference in difficulty 

between between easyeasy (en/decrypt) and (en/decrypt) and hardhard ((cryptanalysecryptanalyse) problems) problems
 More generally the More generally the hardhard problem is known, but is made hard problem is known, but is made hard 

enough to be impractical to break enough to be impractical to break 
 Requires the use of Requires the use of very large numbersvery large numbers
 Hence is Hence is slowslow compared to private key schemescompared to private key schemes
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RSA Public Key EncryptionRSA Public Key Encryption
 Ron Rivest, Adi Shamir, and Len Adleman at MIT 1978
 Exponentiation in a Galois field over integers modulo a prime 

 Exponentiation takes O((log n)3) operations (easy) 
 Security due to cost of factoring large numbers 

 Factorization takes O(e log n log log n) operations (hard)
 Plain text M and ciphertext C are integers between 0 and n-1.
 Key 1 = {e, n}, 

Key 2 = {d, n}
 C = Me mod n

M = Cd mod n
 How to construct keys:

 Select two large primes: p, q, p ≠ q
 n = p×q
 Calculate Euler’s Totient Fn (n) = (p-1)(q-1)
 Select e relatively prime to gcd(, e) = 1; 0 < e < 
 Calculate d = inverse of e mod  de mod  = 1
 Euler’s Theorem: xed = xk(n)+1 = x mod n
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Finding d and eFinding d and e
 de = 1 mod (n)
 Select e first, e.g., e=21+1, 24+1 or 216+1

 Exponentiation is easy.
 Find inverse of e using Euclid's algorithm
 The public key can be small.
 The private key should be large  Don't select d=3.

 Can be attacked using Chinese remainder theorem & 3 
messages with different modulii

 Both d and n are 512 bit (150 digits) numbers.
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RSA Key Construction: ExampleRSA Key Construction: Example
 Select two large primes: p, q, p ≠ q

p = 17, q = 11
 n = p×q = 17×11 = 187
 Calculate  = (p-1)(q-1) = 16x10 = 160
 Select e, such that lcd(, e) = 1; 0 < e < 

say, e = 7
 Calculate d such that de mod  = 1

 Use Euclid’s algorithm to find d=e-1 mod 
 160k+1 = 161, 321, 481, 641
 Check which of these is divisible by 7
 161 is divisible by 7 giving d = 161/7 = 23

 Key 1 = {7, 187}, Key 2 = {23, 187}
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ExponentiationExponentiation

 Can use the Square and Multiply AlgorithmCan use the Square and Multiply Algorithm
 E.g., 3E.g., 3129129 = 3= 3128128.3.311 = 5.3 = 4 mod 11= 5.3 = 4 mod 11
 Takes log (b) operations for Takes log (b) operations for aabb

 To compute ab mod n: 
Expand b as a binary number: bkbk-1 … b2b1b0
k= Number of bits in b 
c = 0; f = 1
for i = k downto 0 

do c = 2  c
f = (f  f) mod n
if bi == 1 then

c = c + 1
f = (f  a) mod n 

return f

a= 125
b= 107
n= 187

j i=2^j a^i a^i mod n bi c a^c mod n
0 1 125 125 1 1 125
1 2 15625 104 1 3 97
2 4 10816 157 0 3 97
3 8 24649 152 1 11 158
4 16 23104 103 0 11 158
5 32 10609 137 1 43 141
6 64 18769 69 1 107 5
7 128 4761 86 0 107 5
8 256 7396 103 0 107 5
9 512 10609 137 0 107 5

10 1024 18769 69 0 107 5

Excel
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Optimizing Private Key OperationsOptimizing Private Key Operations
1. cd mod n = cd mod pq

 Compute cd mod p and cd mod q
 Use Chinese remainder theorem to compute cd mod pq

2. Chinese remainder theorem requires p-1 mod q and q-1 mod p. 
Compute them once and store.

3. Since d is much bigger than p, cd mod p = cr mod p where r= d 
mod (p-1)
 d = k(p-1)+r
 Mod p: ad = ak(p-1)+r = ak(p) ar = ar [Euler's Theorem]

 Only owner of the private key knows p and q and can optimize
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RSA IssuesRSA Issues
 RSA is computationally intense.
 Commonly used key lengths are 1024 bits
 The plain text should be smaller than the key length
 The encrypted text is same size as the key length
 Generally used to encrypt secret keys.
 Potential Attacks:

1. Brute force key search - infeasible given size of numbers
2. Timing attacks - on running of decryption

Can Infer operand size based on time taken 
Use constant time

3. Mathematical attacks - based on difficulty of computing 
ø(n), by factoring modulus n

4. Chosen ciphertext attacks 
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Progress in Progress in FactoringFactoring

Ref: The RSA Factoring Challenge FAQ, http://www.rsa.com/rsalabs/node.asp?id=2094
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Optimal Asymmetric Encryption Padding (OASP)Optimal Asymmetric Encryption Padding (OASP)
 RSA is susceptible to “Chosen Plaintext Attack”

E(PU, M) = Me mod n
E(PU, M1) E(PU, M2) = E(PU, M1M2)

E(PU, 2M)=2e E(PU, M)
 Submit 2e  Ciphertext and get back 2M  know Plaintext M
 OASP: Let k =# bits in RSA modulus

 Plaintext m is k-k0-k1 bit string
 G and H are Cryptographic fn

G expands k0 bits to k-k0 bits
H reduces k-k0 bits to k0 bits

 r is a random k0 bit seed
 Need to recover entire X and Y

m 000 r

G

H

X Y





k-k0-k1
k1 k0

k-k0

Ref: http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding
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SummarySummary

1. Public key encryption uses two keys: one to encrypt and the 
other to decrypt. The keys are interchangeable. One key is 
public. Other is private.

2. RSA uses exponentiation in GF(n) for a large n. 
n is a product of two large primes.

3. RSA keys are <e, n> and <d, n> where ed mod (n)=1
4. Given the keys, both encryption and decryption are easy. But 

given one key finding the other key is hard.
5. The message size should be less than the key size. Use large 

keys 512 bits and larger.
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Optional ExercisesOptional Exercises

 9.2, 9.3, 9.4, 9.8, 9.16, 9.18
 Try on your own. Do not submit.


