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OverviewOverview

1. Prime numbers
2. Fermat’s and Euler’s Theorems
3. Testing for primality
4. The Chinese Remainder Theorm
5. Discrete Logarithms

These slides are partly based on Lawrie BrownLawrie Brown’’s s slides supplied with  William Stallings’s 
book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011.
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Fermat's Little TheoremFermat's Little Theorem

 Given a prime number p:
ap-1 = 1 (mod p)

For all integers ap
Or

ap = a (mod p)
 Example:

 14 mod 5=1 
 24 mod 5=1 
 34 mod 5=1 
 44 mod 5=1
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Euler Euler TotientTotient Function Function øø(n(n))

 When doing arithmetic modulo n  complete set of residues is: 
0..n-1

 Reduced set of residues is those residues which are relatively 
prime to n, e.g., for n=10, 
complete set of residues is {0,1,2,3,4,5,6,7,8,9} 
reduced set of residues is {1,3,7,9} 

 Number of elements in reduced set of residues is called the 
Euler Totient Function ø(n)

 In general need prime factorization, but
 for p (p prime) ø(p)=p-1
 for p.q (p,q prime)   ø(p.q)=(p-1)x(q-1)

 Examples: ø(37) = 36
ø(21) = (3–1)x(7–1) = 2x6 = 12
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Euler's TheoremEuler's Theorem

 A generalisation of Fermat's Theorem 
 aø(n) = 1 (mod n)

 for any a, n where gcd(a,n)=1
 Example:

a=3; n=10; ø(10)=4; 
hence 34 = 81 = 1 mod 10

a=2; n=11; ø(11)=10;
hence 210 = 1024 = 1 mod 11

 Also have: aø(n)+1 = a (mod n)
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Miller Rabin Algorithm for Miller Rabin Algorithm for PrimalityPrimality
 A test for large primes based on 

Fermat’s Theorem
 TEST (n) is:

1. Find integers k, q, k > 0, q odd, 
so that (n–1)=2kq

2. Select a random integer a, 
1<a<n–1

3. if aq mod n = 1 then return 
(“inconclusive");

4. for j = 0 to k – 1 do
5. if (a2jq mod n = n-1)

then return(“inconclusive")
6. return (“composite")

 If inconclusive after t tests with 
different a’s:
Probability (n is Prime after t tests)
= 1- 4-t

 E.g., for t=10 this probability is > 
0.99999

aq mod n = 1?

(aq)2 mod n = n-1?

(aq)4 mod n = n-1?

In
co

nc
lu

si
ve

Composite

Y

Y

Y

Y(aq)2
k−1

mod n = n-1?

aq mod n = n-1?
Y
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Miller Rabin Algorithm ExampleMiller Rabin Algorithm Example
 Test 29 for primality

 29-1 = 28 = 227 = 2kq k=2, q=7
 Let a = 10 

 107 mod 29 = 17
 172 mod 29 = 28 Inconclusive

 Test 221 for primality
 221-1=220=22 55
 Let a=5

 555 mod 221 =112
 1122 mod 221 =168 Composite
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Prime DistributionPrime Distribution

 Prime numbers: 1 2 3 5 7 11 13 17 19 23 29 31
 Prime number theorem states that primes occur roughly every 

(ln n) integers
 But can immediately ignore even numbers
 So in practice need only test 0.5 ln(n) numbers of size n to 

locate a prime
 Note this is only the “average”
 Sometimes primes are close together
 Other times are quite far apart
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Chinese Remainder TheoremChinese Remainder Theorem
 If working modulo a product of numbers 

 E.g., mod M = m1m2..mk
 Chinese Remainder theorem lets us work in each moduli mi 

separately 
 Since computational cost is proportional to size, this is faster

 Example: 452 mod 105 
= (452 mod 3)(105/3){(105/3)-1 mod 3}
+(452 mod 5)(105/5){(105/5)-1 mod 5} 
+(452 mod 7)(105/7){(105/7)-1 mod 7} 
= 235(35-1 mod 3) +2x21(21-1 mod 5) +415(15-1 mod 7) 
= 2352 +2211 +4151 
= (140+42+60) mod 105 = 242 mod 105 = 32

A mod M =

kX
i=1

(A mod mi)
M

mi

Ã·
M

mi

¸−1
mod mi

!
35-1 =x mod 3
35x=1 mod 3 x=2
21x=1 mod 5  x=1
15x=1 mod 7  x=1
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Chinese Remainder TheoremChinese Remainder Theorem
 Alternately, the solution to the following equations:

x = a1 mod m1

x = a2 mod m2

x = ak mod mk

where m1, m2, ... , mk are relatively prime is found as follows:
M = m1 m2 ... Mk then

x =

kX
i=1

ai
M

mi

Ã·
M

mi

¸−1
mod mi

!
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Chinese Remainder TheoremChinese Remainder Theorem ExampleExample
 For a parade, marchers are arranged in columns of seven, but one person is 

left out. In columns of eight, two people are left out. With columns of nine, 
three people are left out. How many marchers are there?

Ref: http://demonstrations.wolfram.com/ChineseRemainderTheorem/

x = 1 mod 7
x = 2 mod 8
x = 3 mod 9
N = 7× 8× 9 = 504
x =

³
1× 504

7 ×
£
504
7

¤−1
7
+ 2× 504

8 ×
£
504
8

¤−1
8

+3× 504
9 ×

£
504
9

¤−1
9

´
mod 7× 8× 9

= (1× 72× (72−1 mod 7) + 2× 63× (63−1 mod 8)
+3× 56× (56−1 mod 9)) mod 504

= (1× 72× 4 + 2× 63× 7 + 3× 56× 5) mod 504
= (288 + 882 + 840) mod 504
= 2010 mod 504
= 498
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Primitive RootsPrimitive Roots

 From Euler’s theorem have aø(n)mod n=1 
 Consider am = 1 (mod n), GCD(a,n)=1

 For some a’s, m can smaller than ø(n)
 If the smallest m is ø(n) then a is called a primitive root
 If n is prime, then successive powers of a "generate" the group 

mod n
 These are useful but relatively hard to find 
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Powers mod 19Powers mod 19

 2, 3, 10, 13, 14, 15 are primitive roots of 19
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Discrete LogarithmsDiscrete Logarithms

 The inverse problem to exponentiation is to find the The inverse problem to exponentiation is to find the discrete discrete 
logarithmlogarithm of a number modulo p of a number modulo p 

 That is to find That is to find ii such that such that b = b = aaii (mod p)(mod p)
 This is written as This is written as i = i = dlogdlogaa b (mod p)b (mod p)
 If If aa is a primitive root then it always exists, otherwise it may is a primitive root then it always exists, otherwise it may 

not, e.g.,not, e.g.,
x = logx = log33 4 mod 13 has no answer 4 mod 13 has no answer 
x = logx = log22 3 mod 13 = 4 by trying successive powers 3 mod 13 = 4 by trying successive powers 

 While exponentiation is relatively easy, finding discrete While exponentiation is relatively easy, finding discrete 
logarithms is generally a logarithms is generally a hardhard problem problem 
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Discrete Logarithms Discrete Logarithms mod 19mod 19
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SummarySummary

1. Fermat’s little theorem: ap-1=1 mod p
2. Euler’s Totient Function ø(p) = # of a<p relative prime to p
3. Euler’s Theorem: aø(p) =1 mod p
4. Primality Testing: n-1=2kq, aq=1, a2q=n-1, …,            =n-1
5. Chinese Remainder Theorem: x=ai mod mi, i=1,…,k, then you 

can calculate x by computing inverse of Mi mod mi
6. Primitive Roots: Minimum m such that am=1 mod p is m=p-1
7. Discrete Logarithms: ai=b mod p i=dlogb,p(a)

(aq)2
k−1
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Homework 8Homework 8

a. Use Fermat’s theorem to find a number x between 0 
and 22, such that x111 is congruent to 8 modulo 23.
Do not use bruteforce searching.

b. Use Miller Rabin test to test 19 for primality
c. X = 2 mod 3 = 3 mod 5 = 5 mod 7, what is x?
d. Find all primitive roots of 11
e. Find discrete log of 17 base 2 mod 29


