
7-1
©2011 Raj JainCSE571SWashington University in St. Louis

Pseudorandom Pseudorandom
Number Generation Number Generation
and Stream Ciphersand Stream Ciphers

Raj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse571-11/

7-2
©2011 Raj JainCSE571SWashington University in St. Louis

OverviewOverview

1. Principles of Pseudorandom Number Generation
2. Pseudorandom number generators
3. Pseudorandom number generation using a block cipher
4. Stream Cipher
5. RC4

These slides are based on Lawrie BrownLawrie Brown’’s s slides supplied with William Stalling’s
book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011.

7-3
©2011 Raj JainCSE571SWashington University in St. Louis

Pseudo Random NumbersPseudo Random Numbers

 Many uses of random numbers in cryptography
 nonces in authentication protocols to prevent replay
 keystream for a one-time pad

 These values should be
 statistically random, uniform distribution, independent
 unpredictability of future values from previous values

 True random numbers provide this
 Psuedo Deterministic, reproducible, generated by a formula

7-4
©2011 Raj JainCSE571SWashington University in St. Louis

A Sample GeneratorA Sample Generator

 For example,

 Starting with x0=5:

 The first 32 numbers obtained by the above procedure 10, 3, 0,
1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 10, 3, 0, 1, 6, 15, 12, 13,
2, 11, 8, 9, 14, 7, 4, 5.

 By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500,
0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375,
0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750,
0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625,
0.8750, 0.4375, 0.2500, 0.3125.

7-5
©2011 Raj JainCSE571SWashington University in St. Louis

TerminologyTerminology
 Seed = x0
 Pseudo-Random: Deterministic yet would pass randomness

tests
 Fully Random: Not repeatable
 Cycle length, Tail, Period

7-6
©2011 Raj JainCSE571SWashington University in St. Louis

LinearLinear--Congruential GeneratorsCongruential Generators
 Discovered by D. H. Lehmer in 1951
 The residues of successive powers of a number have good

randomness properties.

Equivalently,

a = multiplier
m = modulus

7-7
©2011 Raj JainCSE571SWashington University in St. Louis

LinearLinear--Congruential Generators (Cont)Congruential Generators (Cont)
 Lehmer's choices: a = 23 and m = 108+1
 Good for ENIAC, an 8-digit decimal machine.
 Generalization:

 Can be analyzed easily using the theory of
congruences
 Mixed Linear-Congruential Generators
or Linear-Congruential Generators (LCG)

 Mixed = both multiplication by a and addition of b

7-8
©2011 Raj JainCSE571SWashington University in St. Louis

Blum Blum BlumBlum ShubShub GeneratorGenerator

 Use least significant bit from iterative equation:Use least significant bit from iterative equation:
 xxii = x= xii--1122 mod n mod n
 where where n=n=p.qp.q, and primes , and primes p,qp,q=3 mod 4=3 mod 4

 Unpredictable, passes Unpredictable, passes nextnext--bitbit testtest
 Security rests on difficulty of factoring N Security rests on difficulty of factoring N
 Is unpredictable given any run of bits Is unpredictable given any run of bits
 Slow, since very large numbers must be usedSlow, since very large numbers must be used
 Too slow for cipher use, good for key generation Too slow for cipher use, good for key generation

7-9
©2011 Raj JainCSE571SWashington University in St. Louis

Random & Pseudorandom Number Random & Pseudorandom Number
GeneratorsGenerators

7-10
©2011 Raj JainCSE571SWashington University in St. Louis

Using Block Ciphers as Using Block Ciphers as PRNGsPRNGs

 Can use a block cipher to generate random numbers Can use a block cipher to generate random numbers
for cryptographic applications, for cryptographic applications,

 For creating session keys from master keyFor creating session keys from master key
 CTRCTR

XXii = = EEKK[V[Vii]]

 OFBOFB
XXii = E= EKK[[XXii--11]]

7-11
©2011 Raj JainCSE571SWashington University in St. Louis

ANSI X9.17 PRGANSI X9.17 PRG

Date/Time

Seed

Next Seed

Keys

Random Stream

7-12
©2011 Raj JainCSE571SWashington University in St. Louis

Natural Random NoiseNatural Random Noise

 Best source is natural randomness in real world
 Find a regular but random event and monitor
 Do generally need special h/w to do this

 E.g., radiation counters, radio noise, audio noise, thermal
noise in diodes, leaky capacitors, mercury discharge tubes
etc

 Starting to see such h/w in new CPU's
 Problems of bias or uneven distribution in signal

 Have to compensate for this when sample, often by passing
bits through a hash function

 Best to only use a few noisiest bits from each sample
 RFC4086 recommends using multiple sources + hash

7-13
©2011 Raj JainCSE571SWashington University in St. Louis

Stream CiphersStream Ciphers

 Process message bit by bit (as a stream)
 A pseudo random keystream XOR’ed with plaintext bit by bit

Ci = Mi XOR StreamKeyi
 But must never reuse stream key otherwise messages can be

recovered

7-14
©2011 Raj JainCSE571SWashington University in St. Louis

RC4RC4

 A proprietary cipher owned by RSA DSI
 Another Ron Rivest design, simple but effective
 Variable key size, byte-oriented stream cipher
 Widely used (web SSL/TLS, wireless WEP/WPA)
 Key forms random permutation of all 8-bit values
 Uses that permutation to scramble input info processed a byte

at a time

7-15
©2011 Raj JainCSE571SWashington University in St. Louis

RC4 Key Schedule RC4 Key Schedule

 Start with an array S of numbers: 0..255
 Use key to well and truly shuffle
 S forms internal state of the cipher

for i = 0 to 255 do
S[i] = i
T[i] = K[i mod keylen])

j = 0
for i = 0 to 255 do

j = (j + S[i] + T[i]) (mod 256)
swap (S[i], S[j])

7-16
©2011 Raj JainCSE571SWashington University in St. Louis

RC4 EncryptionRC4 Encryption

 Encryption continues shuffling array values
 Sum of shuffled pair selects "stream key" value from

permutation
 XOR S[t] with next byte of message to en/decrypt

i = j = 0
for each message byte Mi

i = (i + 1) (mod 256)
j = (j + S[i]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
Ci = Mi XOR S[t]

7-17
©2011 Raj JainCSE571SWashington University in St. Louis

RC4 OverviewRC4 Overview

7-18
©2011 Raj JainCSE571SWashington University in St. Louis

SummarySummary

1. Pseudorandom number generators use a seed and a formula to
generate the next number

2. Stream ciphers xor a random stream with the plain text.
3. RC4 is a stream cipher

7-19
©2011 Raj JainCSE571SWashington University in St. Louis

Homework 7Homework 7
a. Find the period of the following generator using seed x0=1:

b. Now repeat part a with seed x0 =2
c. What RC4 key value will leave S unchanged during

initialization? That is, after the initial permutation of S, the
entries of S will be equal to the values from 0 through 255 in
ascending order.

