Advanced Encryption Standard (AES)

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

- 1. AES Structure
- 2. AES Round Function
- 3. AES Key Expansion
- 4. AES Decryption

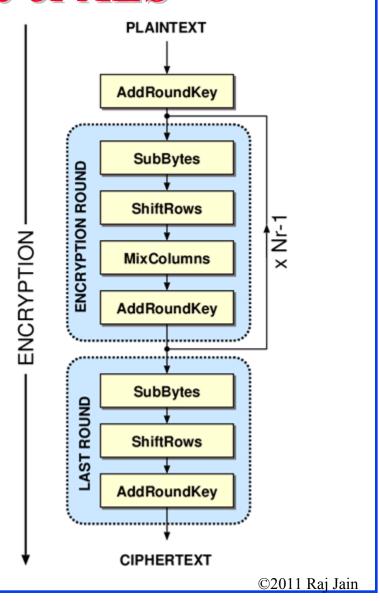
These slides are based on Lawrie Brown's slides supplied with William Stalling's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

Advanced Encryption Standard (AES)

- □ Published by NIST in Nov 2001: FIPS PUB 197
- Based on a competition won by Rijmen and Daemen (Rijndael) from Belgium
- 22 submissions, 7 did not satisfy all requirements
 15 submissions 5 finalists: Mars, RC6, Rijndael, Serpent, Twofish. Winner: Rijndael.
- □ Rijndael allows many block sizes and key sizes
- □ AES restricts it to:
 - Block Size: 128 bits
 - > Key sizes: 128, 192, 256 (AES-128, AES-192, AES-256)
- □ An iterative rather than Feistel cipher

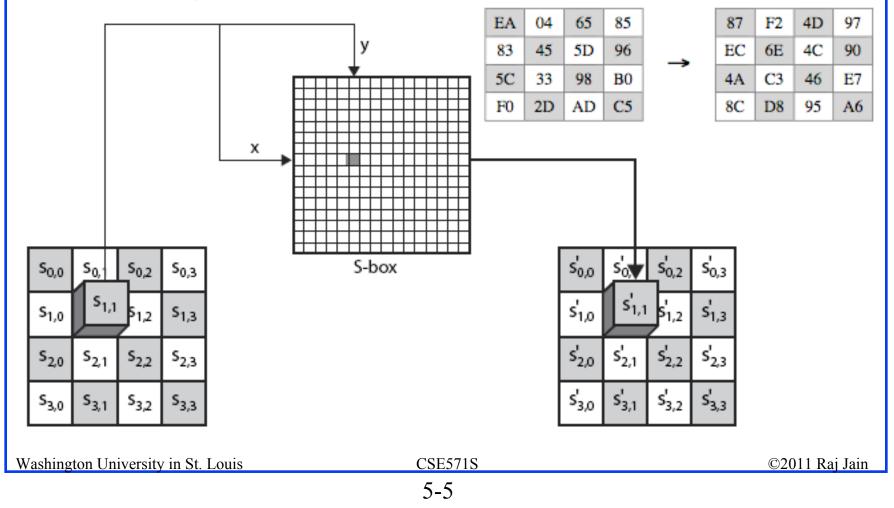
> operates on entire data block in every round


Byte operations: Easy to implement in software

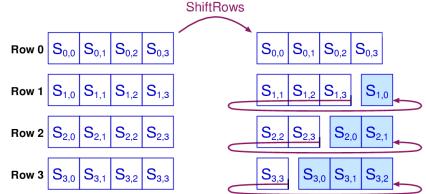
Washington University in St. Louis

CSE571S

Basic Structure of AES


- **A** # Rounds $N_r = 6 + \max\{N_b, N_k\}$
- \square N_b = 32-bit words in the block
- \square N_k = 32-bit words in key
- □ AES-128: 10
- □ AES-192: 12
- □ AES-256: 14

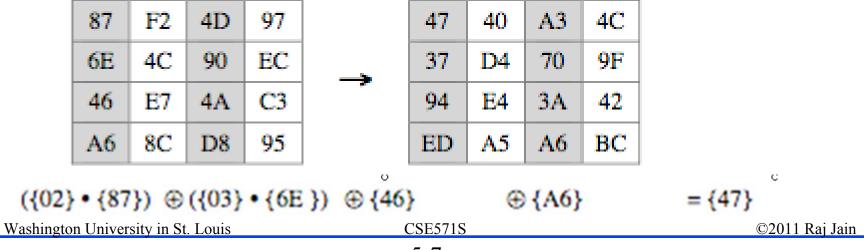
CSE571S


1. Substitute Bytes

Each byte is replaced by byte indexed by row (left 4-bits) & column (right 4-bits) of a 16x16 table

2. Shift Rows

- □ 1st row is unchanged
- □ 2nd row does 1 byte circular shift to left
- □ 3rd row does 2 byte circular shift to left
- □ 4th row does 3 byte circular shift to left



	87	F2	4D	97		87	F2	4D	97	
	EC	6E	4C	90	->	6E	4C	90	EC	
	4A	C3	46	E7		46	E7	4A	C3	
	8C	D8	95	A6		A6	8C	D8	95	
Washington Universi	ty in St. L	ouis			CSE571S					©2011 Ra
					5-6					

3. Mix Columns

□ Effectively a matrix multiplication in GF(2⁸) using prime polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$

[02	03	01	$\begin{array}{c} 01 \\ 01 \\ s_{1,0} \\ 03 \\ 02 \\ s_{3,0} \end{array}$	^{.5} 0,1	s _{0,2}	50,3	s0,0	$s_{0,1}$	$\dot{s}_{0,2}$	s _{0,3}]
01	02	03	01 s _{1,0}	<i>s</i> _{1,1}	<i>s</i> _{1,2}	s _{1,3}	S_1,0	$s'_{1,1}$	s _{1,2}	s _{1,3}
01	01	02	03 s _{2,0}	s _{2,1}	s _{2,2}	s _{2,3}	= s _{2,0}	s. 2,1	s2,2	\$2,3
03	01	01	$02 s_{3,0} $	^{.5} 3,1	s _{3,2}	s _{3,3}	\$3,0	1	s3,2	S3,3

AES Arithmetic

Uses arithmetic in the finite field GF(2⁸) with irreducible polynomial

 $m(x) = x^8 + x^4 + x^3 + x + 1$ which is (100011011) or {11B}

Example:

 $\{02\} \bullet \{87\} \mod \{11B\}$

- $= (1 \ 0000 \ 1110) \ mod \ \{11B\}$
- $= (1\ 0000\ 1110) \oplus (1\ 0001\ 1011)$

= (0001 0101)

4. Add Round Key

□ XOR state with 128-bits of the round key

 \oplus

s _{0,0}	s _{0,1}	\$ _{0,2}	s _{0,3}	
s _{1,0}	s _{1,1}	s _{1,2}	s _{1,3}	
s _{2,0}	s _{2,1}	\$ _{2,2}	\$ _{2,3}	
S _{3,0}	s _{3,1}	\$ _{3,2}	S _{3,3}	

W;	W:. 1	Wina	w _{i+3}	_
	141	172	145	

s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

AES Key Expansion

Use four byte words called w_i . Subkey = 4 words. For AES-128:

- □ First subkey (w3, w2, w1, w0) = cipher key
- Other words are calculated as follows:

$$w_i = w_{i-1} \oplus w_{i-4}$$

for all values of i that are not multiples of 4.

- For the words with indices that are a multiple of 4 (w_{4k}) :
- 1. RotWord: Bytes of w_{4k-1} are rotated left shift (nonlinearity)
- 2. SubWord: SubBytes fn is applied to all four bytes. (Diffusion)
- 3. The result r_{sk} is XOR'ed with w_{4k-4} and a round constant r_{conk} (breaks Symmetry):

$w_{4k} = r_{sk} \oplus w_{4k-4} \oplus r_{conk}$

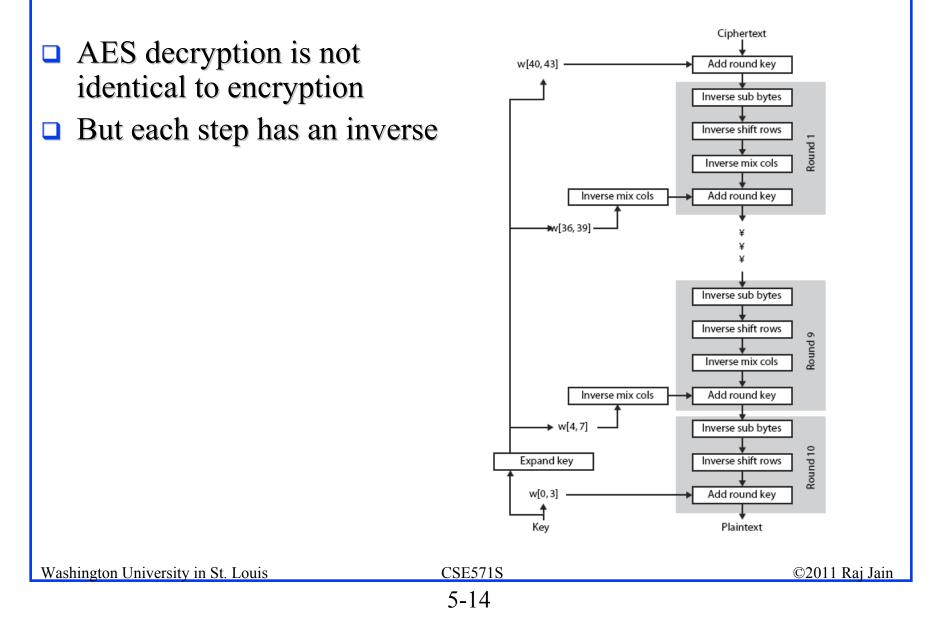
For AES-192 and AES-256, the key expansion is more complex.

Washington University in St. Louis

AES Example Key Expansion

Key Words	Auxiliary Function
w0 = 0f 15 71 c9	RotWord(w3)= 7f 67 98 af = x1
w1 = 47 d9 e8 59	SubWord(x1)= d2 85 46 79 = y1
w2 = 0c b7 ad	Rcon(1) = 01 00 00 00
w3 = af 7f 67 98	y1 ⊕ Rcon(1)= d3 85 46 79 = z1
w4 = w0 ⊕ z1 = dc 90 37 b0	RotWord(w7)= 81 15 a7 38 = x2
w5 = w4 w1 = 9b 49 df e9	SubWord(x4)= 0c 59 5c 07 = y2
w6 = w5 ⊕ w2 = 97 fe 72 3f	Rcon(2)= 02 00 00 00
w7 = w6 ⊕ w3 = 38 81 15 a7	y2 ⊕ Rcon(2)= 0e 59 5c 07 = z2
w8 = w4 ④ z2 = d2 c9 6b b7	RotWord(w11)= ff d3 c6 e6 = x3
w9 = w8 ⊕ w5 = 49 80 b4 5e	SubWord(x2)= 16 66 b4 8e = y3
w10 = w9 ⊕ w6 = de 7e c6 61	Rcon(3) = 04 00 00 00
wll = wl0 ⊕ w7 = e6 ff d3 c6	y3 ⊕ Rcon(3)= 12 66 b4 8e = z3

AES Example Encryption


Start of round	After SubBytes	After ShiftRows	After MixColumns	Round Key
01 89 fe 76 23 ab dc 54 45 cd ba 32 67 ef 98 10				0f 47 0c af 15 d9 b7 7f 71 e8 ad 67 c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38
36 72 6b 2b	05 40 7f fl	40 7f fl 05	e4 8e 16 51	90 49 fe 81
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 le 52	b7 5e 61 c6

AES Example Avalanche

Round		Number of bits that differ	
	0123456789abcdeffedcba9876543210	1	
	0023456789abcdeffedcba9876543210	1	
0	0e3634aece7225b6f26b174ed92b5588	1	
U	0f3634aece7225b6f26b174ed92b5588	1	
1	657470750fc7ff3fc0e8e8ca4dd02a9c	20	
1	c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20	
2	5c7bb49a6b72349b05a2317ff46d1294	58	
2	fe2ae569f7ee8bb8c1f5a2bb37ef53d5		
3	7115262448dc747e5cdac7227da9bd9c	59	
3	ec093dfb7c45343d689017507d485e62		
4	f867aee8b437a5210c24c1974cffeabc	61	
4	43efdb697244df808e8d9364ee0ae6f5	01	
5	721eb200ba06206dcbd4bce704fa654e	68	
5	7b28a5d5ed643287e006c099bb375302	08	
6	0ad9d85689f9f77bc1c5f71185e5fb14	64	
0	3bc2d8b6798d8ac4fe36a1d891ac181a	04	
7	db18a8ffa16d30d5f88b08d777ba4eaa	67	
/	9fb8b5452023c70280e5c4bb9e555a4b	07	
8	f91b4fbfe934c9bf8f2f85812b084989	65	
0	20264e1126b219aef7feb3f9b2d6de40	05	
9	cca104a13e678500ff59025f3bafaa34	61	
9	b56a0341b2290ba7dfdfbddcd8578205	01	
10	ff0b844a0853bf7c6934ab4364148fb9	50	
10	612b89398d0600cde116227ce72433f0	58	

CSE571S

AES Decryption

- 1. AES encrypts 128 bit blocks with 128-bit, 192-bit or 256-bit keys using 10, 12, or 14 rounds, respectively.
- 2. Is not a Feistel cipher \Rightarrow All 128 bits are encrypted
- 3. Each round = 4 steps of SubBytes, ShiftRows, MixColumns, and AddRoundKey.
- 4. Last round has only 3 steps. No MixColumns.
- 5. Decryption is not the same as encryption (as in DES). Decryption consists of inverse steps.

Homework 5

- a. Show the original contents of state, displayed as a 4x4 matrix.
- b. Show the value of state after initial AddRoundKey.
- c. Show the value of State after SubBytes.
- d. Show the value of State after ShiftRows.
- e. Show the value of State after MixColumns.

Lab Homework 4

- This homework requires two computers with OpenSSH and telnet client and servers installed. You can use CSE571XPC2 client and CSE571XPS server or your own computers.
- □ Start wireshark on the client machine.
- telnet to the server and login with your username and password. Logout.
- Use "follow the TCP stream option" (right click on the packet) to see your username and password on the screen. Capture the screen and circle your password.
- ssh to the server and login with your username and password.
 Logout.
- □ Stop wireshark and read the trace. Capture the screen. Circle the password characters.

Note the difference in the two logins?

Washington University in St. Louis

CSE571S