Basic Concepts in Number Theory and Finite Fields

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

- 1. The Euclidean Algorithm for GCD
- 2. Modular Arithmetic
- 3. Groups, Rings, and Fields
- 4. Galois Fields GF(p)
- 5. Polynomial Arithmetic

These slides are partly based on Lawrie Brown's slides supplied with William Stalling's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

Euclid's Algorithm

```
Goal: To find greatest common divisor
Example: gcd(10,25)=5 using long division
10) 25 (2
    20
  5)10 (2
    10
    00
Test: What is GCD of 12 and 105?
Washington University in St. Louis
                                 CSE571S
```

Euclid's Algorithm: Tabular Method

			10	25						
-	q_i	r_i	u_i	v_i	-					
-	0	25	0	1	1.	Write the first 2 rows. Set $i = 2$.				
	0	10	1	0	2.	Divide r_{i-1} by r_i , write quotient q_{i+1} on the next row				
	2	5	-2	1	3.	Fill out the remaining entries in the new bottom row:				
	2	0	5	-2		a. Multiply r_i by q_{i+1} and subtract from r_{i-1} b. Multiply u_i by q_{i+1} and subtract from u_{i-1}				
	r_i	$= u_i \lambda$	$c + v_i$	_i Y	-	c. Multiply v_i by q_{i+1} and subtract from previous v_{i-1}				
C	$\square u_i$	$= u_{i-2}$	2 - <i>q</i> _i	<i>u</i> _{<i>i</i>-1}						
C	\mathbf{V}_i	$= v_{i-2}$	$-q_i$	V _{i-1}						
C	□ Finally, If $r_i = 0$, $gcd(x,y) = r_{i-1}$									
C	□ If gcd(x, y) = 1, $u_i x + v_i y = 1 \Rightarrow x^{-1} \mod y = u_i$ ⇒ u_i is the inverse of x in "mod y" arithmetic.									

Euclid's Algorithm Tabular Method (Cont)

□ Example 2: Fill in the blanks

_			12	105
_	q_i	r_i	u_i	v_i
-	0	15	0	1
	0	8	1	0
	-	-	-	-
	-	-	-	-
	-	-	-	-

Homework 4A

□ 4.19a Find the multiplicative inverse of 5678 mod 8765

Modular Arithmetic

- $\square xy \mod m = (x \mod m) (y \mod m) \mod m$
- $\square (x+y) \mod m = ((x \mod m) + (y \mod m)) \mod m$
- $\square (x-y) \mod m = ((x \mod m) (y \mod m)) \mod m$
- $\square x^4 \mod m = (x^2 \mod m)(x^2 \mod m) \mod m$
- $\square x^{ij} \mod m = (x^i \mod m)^j \mod m$
- \square 125 mod 187 = 125
- $(225+285) \mod 187 = (225 \mod 187) + (285 \mod 187) = 38+98 = 136$
- **a** $125^2 \mod 187 = 15625 \mod 187 = 104$
- □ $125^4 \mod 187 = (125^2 \mod 187)^2 \mod 187$ = $104^2 \mod 187 = 10816 \mod 187 = 157$
- □ $128^6 \mod 187 = 125^{4+2} \mod 187 = (157 \times 104) \mod 187 = 59$

Modular Arithmetic Operations

- **\Box** Z = Set of all integers = {..., -2, -1, 0, 1, 2, ...}
- $\Box Z_n = \text{Set of all non-negative integers less than n} \\= \{0, 1, 2, ..., n-1\}$
- **D** $Z_2 = \{0, 1\}$
- $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$
- Addition, Subtraction, Multiplication, and division can all be defined in Z_n
- □ For Example:
 - > (5+7) mod 8 = 4
 - > (4-5) mod 8 = 7
 - > (5 \times 7) mod 8 = 3
 - $> (3/7) \mod 8 = 5$
 - > $(5*5) \mod 8 = 1$

Modular Arithmetic Properties

Property	Expression				
Commutative laws	$(w + x) \mod n = (x + w) \mod n$				
Commutative laws	$(w \times x) \mod n = (x \times w) \mod n$				
Associative laws	$(w + x) \mod n = (x + w) \mod n$ $(w \times x) \mod n = (x \times w) \mod n$ $[(w + x) + y] \mod n = [w + (x + y)] \mod n$ $[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$ $[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$ $(0 + w) \mod n = w \mod n$ $(1 \times w) \mod n = w \mod n$				
Associative laws	$[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$				
Distributive law	$[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$				
Identities	$(0+w) \mod n = w \mod n$				
Identities	$(1 \times w) \mod n = w \mod n$				
Additive inverse (-w)	For each $w \in \mathbb{Z}_n$, there exists a <i>z</i> such that $w + z = 0 \mod n$				

Group

- Group: A set of elements that is closed with respect to some operation.
- $\Box \quad Closed \Rightarrow The result of the operation is also in the set$
- □ The operation obeys:
 - > Obeys associative law: (a.b).c = a. (b.c)
 - > Has identity e: e.a = a.e = a
 - > Has inverses a^{-1} : $a \cdot a^{-1} = e$
- □ Abelian Group: The operation is commutative

$$a.b = b.a$$

\Box Example: Z_8 , + modular addition, identity =0

Cyclic Group

Exponentiation: Repeated application of operator

- > example: $a^3 = a.a.a$
- Cyclic Group: Every element is a power of some fixed element, i.e.,

 $b = a^k$ for some a and every b in group a is said to be a generator of the group

Example: {1, 2, 4, 8} with mod 12 multiplication, the generator is 2.

$$\Box$$
 2⁰=1, 2¹=2, 2²=4, 2³=8, 2⁴=4, 2⁵=8

Ring

- **Ring**:
 - 1. A group with two operations: addition and multiplication
 - 2. The group is abelian with respect to addition: a+b=b+a
 - 3. Multiplication and additions are both associative:

a+(b+c)=(a+b)+c

a.(b.c)=(a.b).c

1. Multiplication distributes over addition

a.(b+c)=a.b+a.c

- Commutative Ring: Multiplication is commutative, i.e., a.b = b.a
- □ **Integral Domain**: Multiplication operation has an identity and no zero divisors

|--|

Washington University in St. Louis	CSE571S	©2011 Raj Jain
	4 1 2	

Homework 4C

4.3 Consider the set S = {a, b, c} with addition and multiplication defined by the following tables:

+	a	b	С	\times	a	b	С
a	a	b	С	a	a	b	С
b	b	a	С	b	b	b	b
c	c	С	a	c	С	b	С

□ Is S a ring? Justify your answer.

Finite Fields or Galois Fields

- □ Finite Field: A field with finite number of elements
- Also known as Galois Field
- The number of elements is always a power of a prime number. Hence, denoted as GF(pⁿ)
- □ GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p
- Can do addition, subtraction, multiplication, and division without leaving the field GF(p)
- □ GF(2) = Mod 2 arithmetic GF(8) = Mod 8 arithmetic
- **\Box** There is no GF(6) since 6 is not a power of a prime.

GF(7) Multiplication Example

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial Arithmetic

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = \sum a_i x^i$

1. Ordinary polynomial arithmetic:

- > Add, subtract, multiply, divide polynomials,
- > Find remainders, quotient.
- > Some polynomials have no factors and are prime.
- 2. Polynomial arithmetic with mod p coefficients
- 3. Polynomial arithmetic with **mod p** coefficients and mod m(x) operations

Polynomial Arithmetic with Mod 2 Coefficients

All coefficients are 0 or 1, e.g., let $f(x) = x^3 + x^2$ and $g(x) = x^2 + x + 1$ $f(x) + g(x) = x^3 + x + 1$ $f(x) \times g(x) = x^5 + x^2$

Division: f(x) = q(x) g(x) + r(x)

> can interpret r(x) as being a remainder

$$\succ r(x) = f(x) \mod g(x)$$

- > if no remainder, say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is
 irreducible (or prime) polynomial
- Arithmetic modulo an irreducible polynomial forms a finite field
- □ Can use Euclid's algorithm to find gcd and inverses.

Washington	University in St. Louis	
0		

Example GF(2³)

Table 4.7 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

(a) Addition

		000	001	010	011	100	101	110	111
	+	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	x	x + 1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
001	1	1	0	x + 1	x	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^{2} + x$
010	x	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$
011	<i>x</i> + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²
100	x ²	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x + 1
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	x
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x ²	x + 1	x	1	0
	(b) Multiplication								
		000	001	010	011	100	101	110	111
	×	0	1	x	<i>x</i> + 1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	x	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	x	0	x	x ²	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	x
100	x ²	0	x ²	x + 1	$x^2 + x + 1$	$x^2 + x$	x	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	x	$x^2 + x + 1$	x + 1	$x^{2} + x$
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + x$	x ²	x + 1
Washing	ton Universit	y in St. Louis			CSE571S				©2011 Raj Jai
	4-20								

Computational Example in GF(2ⁿ)

- Since coefficients are 0 or 1, any polynomial can be represented as a bit string
- □ In GF(2³), (x²+1) is 101_2 & (x²+x+1) is 111_2

Addition:

>
$$(x^{2}+1) + (x^{2}+x+1) = x$$

- > 101 XOR $111 = 010_2$
- Multiplication:

$$(x+1).(x^{2}+1) = x.(x^{2}+1) + 1.(x^{2}+1)$$

= $x^{3}+x+x^{2}+1 = x^{3}+x^{2}+x+1$

> 011.101 = (101) <<1 XOR (101) <<0 = 1010 XOR 101 = 1111₂

D Polynomial modulo reduction (get q(x) & r(x)) is

- > $(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
- > 1111 mod 1011 = 1111 XOR 1011 = 0100_2

Homework 4D

□ 4.25d Determine the gcd of the following pairs of polynomials over GF(11)

 $5x^3+2x^2-5x-2$ and $5x^5+2x^4+6x^2+9x$

Using a Generator

□ A generator g is an element whose powers generate all non-zero elements

> in F have 0, g^0 , g^1 , ..., g^{q-2}

□ Can create generator from **root** of the irreducible polynomial then adding exponents of generator

- 1. Euclid's tabular method allows finding gcd and inverses
- 2. Group is a set of element and an operation that satisfies closure, associativity, identity, and inverses
- 3. Abelian group: Operation is commutative
- 4. Rings have two operations: addition and multiplication
- 5. Fields: Commutative rings that have multiplicative identity and inverses
- Finite Fields or Galois Fields have pⁿ elements where p is prime
- 7. Polynomials with coefficients in GF(2n) also form a field.

Washington University in St. Louis