Classical Encryption Techniques

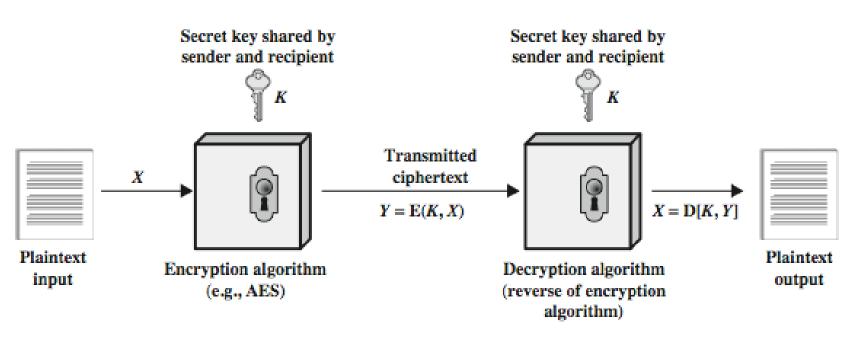
Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

2-1



- 1. Symmetric Cipher Model
- 2. Substitution Techniques
- 3. Transposition Techniques
- 4. Product Ciphers
- 5. Steganography

These slides are based on Lawrie Brown's slides supplied with William Stalling's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

Symmetric Cipher Model

$Y = \mathrm{E}(\mathrm{K}, X)$)
X = D(K,	Y)

K=Secret Key Same key is used for encryption and decryption. \Rightarrow Single-key or private key encryption.

Some Basic Terminology

- **Plaintext** original message
- **Ciphertext** coded message
- **Cipher** algorithm for transforming plaintext to ciphertext
- **Key** info used in cipher known only to sender/receiver
- **Encipher (encrypt)** converting plaintext to ciphertext
- **Decipher (decrypt)** recovering ciphertext from plaintext
- **Cryptography** study of encryption principles/methods
- Cryptanalysis (code breaking) study of principles/ methods of deciphering ciphertext without knowing key
- **Cryptology** field of both cryptography and cryptanalysis

Cryptography Classification

□ By type of encryption operations used

- Substitution
- > Transposition
- > Product
- By number of keys used
 - > Single-key or private
 - > Two-key or public
- □ By the way in which plaintext is processed
 - > Block

> Stream

Washington University in St. Louis

CSE571S

2-5

Cryptanalysis

Objective: To recover key not just message

□ Approaches:

- Cryptanalytic attack
- > Brute-force attack
- □ If either succeed all key use is compromised

□ Brute-force attack:

Key Size (bits)	Number of Alternative Keys	Time requi	red at 1 decryption/µs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^9$	2 ³¹ μs	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ μs	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	2 ¹²⁷ μs	$= 5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	2 ¹⁶⁷ µs	$= 5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \ \mu s$	$= 6.4 \times 10^{12}$ years	6.4×10^6 years
ashington University in	St. Louis	CSE571S		©2011 Raj Jai
		2-6		

Substitution

□ Caesar Cipher: Replaces each letter by 3rd letter on

□ Example:

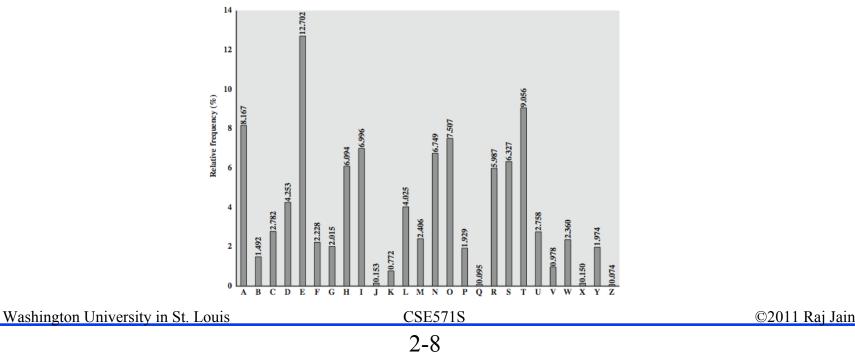
meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

□ Can define transformation as:

a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

■ Mathematically give each letter a number abcdefghijklmnopqrstuvwxyz 012345678910111213141516171819202122232425

□ Then have Caesar cipher as:


$$c = E(k, p) = (p + k) \mod (26)$$

 $p = D(k, c) = (c - k) \mod (26)$

□ Weakness: Total 26 keys

Substitution: Other forms

Random substitution:
 Plain: abcdefghijklmnopqrstuvwxyz
 Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN
 The key is 26 character long
 => 26! (= 4 x 10²⁶) Keys in place of 26 keys

Letter frequencies to find common letters: E,T,R,N,I,O,A,S

Substitution: Other forms (Cont)

Use two-letter combinations: Playfair Cipher
 Use multiple letter combinations: Hill Cipher

Poly-alphabetic Substitution Ciphers

- Use multiple ciphers. Use a key to select which alphabet (code) is used for each letter of the message
- Vigenère Cipher: Example using keyword deceptive key: deceptivedeceptivedeceptive plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

One-Time Pad

- If a truly random key as long as the message is used, the cipher will be secure
- □ Called a One-Time pad
- Is unbreakable since ciphertext bears no statistical relationship to the plaintext
- Since for any plaintext & any ciphertext there exists a key mapping one to other
- □ Can only use the key **once** though
- Problems in generation & safe distribution of key

Transposition (Permutation) Ciphers

Rearrange the letter order without altering the actual letters
 Rail Fence Cipher: Write message out diagonally as:

```
mematrhtgpry
```

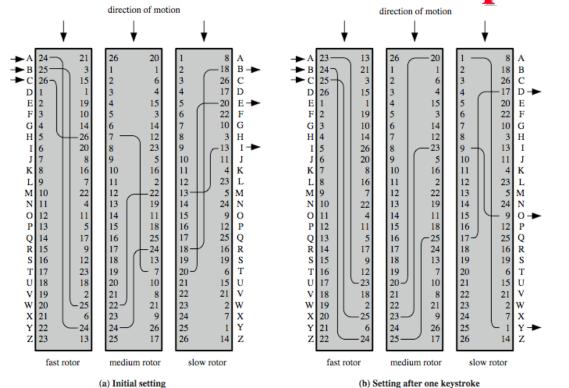
etefeteoaat

- Giving ciphertext: MEMATRHTGPRYETEFETEOAAT
- Row Transposition Ciphers: Write letters in rows, reorder the columns according to the key before reading off.
 Key: 4312567
 Column Out 4 3 1 2 5 6 7
 Plaintext: a t t a c k p
 o s t p o n e
 d u n t i l t
 w o a m x y z
 Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
 Washington University in St. Louis
 CESTIS
 ©2011 Rai Jain

Product Ciphers

Use several ciphers in succession to make harder, but:

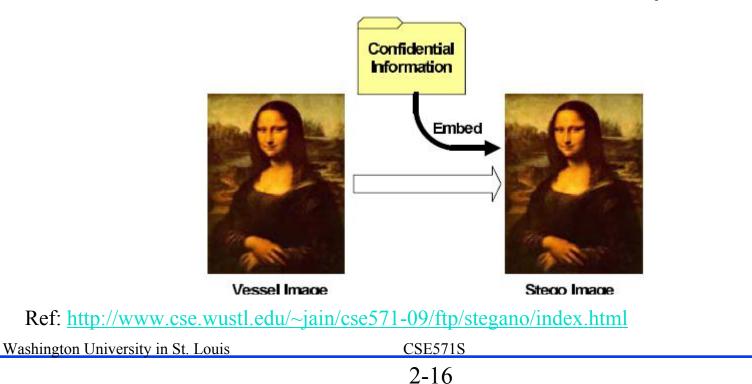
- > Two substitutions make a more complex substitution
- > Two transpositions make more complex transposition
- > But a substitution followed by a transposition makes a new much harder cipher
- □ This is a bridge from classical to modern ciphers


Rotor Machines

- Before modern ciphers, rotor machines were most common complex ciphers in use
- □ Widely used in WW2
 - German Enigma, Allied Hagelin, Japanese Purple
- Implemented a very complex, varying substitution cipher
- Used a series of cylinders, each giving one substitution, which rotated and changed after each letter was encrypted

Hagelin Rotor Machine

Rotor Machine Principle


- A becomes Y (First rotor). Y becomes R (2nd rotor). R becomes B (3rd rotor).
- □ After each letter, first rotor moves 1 position. After each full rotation of 1st rotor, 2nd rotor moves by 1 position.

• Cycle length =
$$26^3$$

Washington University in St. Louis

Steganography

- □ Hide characters in a text, hide bits in a photograph
- Least significant bit (lsb) of a digital photograph may be a message.
- Drawback: high overhead to hide relatively few info bits
- Advantage: Can obscure encryption use

©2011 Rai Jain

- 1. The key methods for cryptography are: Substitution and transposition
- 2. Letter frequency can be used to break substitution
- 3. Substitution can be extended to multiple letters and multiple ciphers. Mono-alphabetic=1 cipher, Poly-alphabetic=multiple ciphers
- 4. Examples: Caesar cipher (1 letter substitution), Playfair (2letter), Hill (multiple letters), Vigenere (poly-alphabetic).
- 5. Multiple stages of substitution and transposition can be used to form strong ciphers.

Washington University in St. Louis

CSE571S

Homework 2

- □ Submit solution to problem 2.18
- 2.18 This problem explores the use of a one-time pad version of the Vigenere cipher. In this scheme, the key is a stream of random numbers between 0 and 26. For example, if the key is 3 19 5..., then the first letter of the plaintext is encrypted with a shift of 3 letters, the second with a shift of 19 letters, the third with a shift of 5 letters, and so on.
- A. Encrypt the plain text sendmoremoney with the key stream 9 0 1 7 23 15 21 14 11 11 2 8 9
- B. Using the ciphertext produced in part (a), find a key so that the cipher text decrypts to the plain text cashnotneeded.