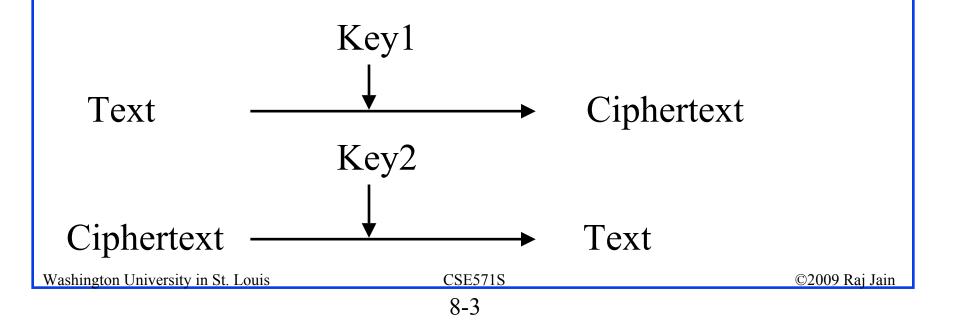


- 1. Number Theory
- 2. RSA Public Key Encryption
- 3. Public-Key Cryptography Standards (PKCS)
- 4. Diffie-Hellman Key Agreement
- 5. Digital Signature Standard
- 6. Elliptic Curve Cryptography (ECC)
- 7. Zero-Knowledge Proof Systems

Public Key Encryption

- □ Invented in 1975 by Diffie and Hellman
- Encrypted_Message = Encrypt(Key1, Message)
- Message = Decrypt(Key2, Encrypted_Message)



Public Key Encryption Example

- □ Rivest, Shamir, and Adleman
- $\square RSA: Encrypted_Message = m^3 \mod 187$
- □ Message = Encrypted_Message¹⁰⁷ mod 187
- □ Key1 = <3,187>, Key2 = <107,187>
- $\Box Message = 5$
- $\Box \text{ Encrypted Message} = 5^3 = 125$

• Message =
$$125^{107} \mod 187 = 5$$

= $125^{(64+32+8+2+1)} \mod 187$
= { $(125^{64} \mod 187)(125^{32} \mod 187)...$
 $(125^2 \mod 187)(125 \mod 187)$ } mod 18

Modular Arithmetic

 $\square xy \mod m = (x \mod m) (y \mod m) \mod m$

$$\square x^4 \mod m = (x^2 \mod m)(x^2 \mod m) \mod m$$

$$\square x^{ij} \mod m = (x^i \mod m)^j \mod m$$

125 mod
$$187 = 125$$

$$\square 125^2 \mod 187 = 15625 \mod 187 = 104$$

$$\square 125^4 \mod 187 = (125^2 \mod 187)^2 \mod 187$$
$$= 104^2 \mod 187 = 10816 \mod 187 = 157$$

$$\square 128^8 \mod 187 = 157^2 \mod 187 = 152$$

$$\square 128^{16} \mod 187 = 152^2 \mod 187 = 103$$

$$\square 128^{32} \mod 187 = 103^2 \mod 187 = 137$$

$$\square 128^{64} \mod 187 = 137^2 \mod 187 = 69$$

$$\square 128^{64+32+8+2+1} \mod 187 = 69 \times 137 \times 152 \times 104 \times 125 \mod 187$$

 $= 18679128000 \mod 187 = 5$

Definitions

□ Co-Prime = Relatively Prime: x and y are relatively prime if gcd(x,y)=1> Example: 6, 11 □ Inverse: x is inverse of y if xy=1 mod n > If ux + vn = 1, $x^{-1} = u \mod n$ > Example: what is inverse of 6 mod 11 $\square 2 \times 6 - 1 \times 11 = 1 \implies$ Inverse of 6 mod 11 is 2. Smooth Number = Product of small primes

Euclid's Algorithm

```
Goal: To find greatest common divisor
Example: gcd(10,25)=5 using long division
10) 25 (2
   20
 5)10 (2
   10
   00
```

Washington University in St. Louis

Euclid's Algorithm: Tabular Method							
			10	25			
-	q_i		u_i		_		
	0	$\overline{25}$	0	1	_		
	0	10	1	0			
	2	5	-2	1			
	2	0	5	-2			
$\mathbf{I} \mathbf{r}_i = \mathbf{u}_i \mathbf{x} + \mathbf{v}_i \mathbf{y}$	Ι				-		
$u_i = u_{i-2} - q_i u_j$	i-1						
$v_i = v_{i-2} - q_i v_i$	i-1						
□ Finally, If $r_i = 0$, gcd(x,y) = r_{i-1}							
$\Box \text{ If } r_i = 1, u_i x + v_i y = 1 \Longrightarrow x^{-1} \text{ mod } y = u_i$							
* *	•				-		

Chinese Remainder Theorem

□ The solution to the following equations:

$$\begin{split} &x = a_1 \bmod n_1 \\ &x = a_2 \bmod n_2 \\ &x = a_k \bmod n_k \\ &\text{where } n_1, n_2, \dots, n_k \text{ are relatively prime is found as follows:} \\ &N = n_1 n_2 \dots n_k \\ &N_i = N/n_i \\ &\text{Find } s_i \text{ such that } r_i n_i + s_i N_i = 1 \\ &\text{Let } e_i = s_i N_i, \text{ then} \\ &x = \sum_i^k a_i e_i \bmod N \end{split}$$

Chinese Remainder Theorem (Cont)

• Example: Solve the equations:			7	66			
$\Box x = 3 \mod 6$	q_i	r_i	u_i	v_i			
	0	66	0	1			
$\Box x = 6 \mod 7$	0	7	1	0			
$\Box x = 10 \mod 11$	9	3	-9	1			
$\square N = 6 \times 7 \times 11 = 462$	2	1	19	-2			
$\square gcd(6,77): 13 \times 6 - 1 \times 77 = 1 \Longrightarrow e_1 = -77$							
$\square gcd(7,66): 19 \times 7-2 \times 66 = 1 \implies e_2 = -132$							
$\Box \text{ gcd}(11,42): -19 \times 11 + 5 \times 42 \Longrightarrow \text{e}_3 = 210$							
$\Box x = 3 \times (-77) + 6 \times (-132) + 10 \times 210 = -231 - 792 +$							
$2100 = 1077 \mod 462 = 153$							
Washington University in St. Louis CSE571S			©20	09 Raj Jain			

Euler's Totient Function

 \Box Z_n = Set of all numbers mod n = {0, 1, 2, ..., n-1}

 \Box Z_n* = Set of all numbers relatively primes to n

- $\Box \Phi(n) = "Phi(n)" = Number of elements in Z_n^*$
- □ If n is prime, $\Phi(n)=n-1$

□ Example:

$$Z_{10} = \{0, 1, 2, 3, ..., 9\}$$

 $Z_{10}^{*} = \{1, 3, 7, 9\}$
 $\Phi(10) = 4$

Euler's Theorem

 $a^{\Phi(n)} = 1 \mod n$

 $a^{(k\Phi(n)+1)} = a \mod n$

- □ For all $a \in Z_n^*$
- □ For all $a \in Z_n^*$

Examples:

- $> z_{10}^* = \{1, 3, 7, 9\}$
- ▶ Φ(10)=4
- > $1^4 \mod 10 = 1$
- $> 3^4 \mod 10 = 1$
- $> 7^4 \mod 10 = 1$
- > $9^4 \mod 10 = 1$

Fermat's Theorem

□ If p is prime and $0 \le a \le p$, $a^{p-1} \mod p = 1$

□ Example:

- > $2^6 \mod 7 = 64 \mod 7 = 1$
- > $3^4 \mod 5 = 81 \mod 5 = 1$
- > This is a necessary condition. Not sufficient.
- > $a^{p-1} \mod p = 1$ for all $a \neq > p$ is prime
- > Carmichael Numbers or pseudo-primes
- > Example: $561 = 3 \times 11 \times 17$

Miller and Rabin Method Prime Test

- □ Express n-1 as $2^{b}c$ where *c* is odd.
- \Box Pick a random *a*.

$$\square a^{n-1} = a^{2^b c} = (a^c)^{2^b}$$

- □ Compute a^c mod n
- □ Square it b times: a^{2c} , a^{4c} , a^{8c} , ..., $a^{\{2^b\}c}$
- □ If the final result is not one \Rightarrow n is not a prime
- □ If any of the intermediate results is 1, check if the previous number is ± 1.
- \Box If ± 1 then n is potentially prime.
- \square Pick another *a* and try again.

RSA Public Key Encryption

- □ Ron Rivest, Adi Shamir, and Len Adleman at MIT 1978
- Both plain text M and cipher text C are integers between 0 and n-1.
- □ Key $1 = \{e, n\},$
 - Key $2 = \{d, n\}$
- $\Box C = M^e \mod n$
 - $M = C^d \bmod n$
- □ How to construct keys:
 - > Select two large primes: p, q, $p \neq q$
 - \succ n = p×q
 - > Calculate Euler's Totient Fn $\Phi(n) = (p-1)(q-1)$
 - > Select e relatively prime to $\Phi \Rightarrow gcd(\Phi, e) = 1; 0 < e < \Phi$
 - > Calculate d = inverse of e mod $\Phi \Rightarrow$ de mod $\Phi = 1$
 - > Euler's Theorem: $x^{ed} = x^{k\Phi(n)+1} = x \mod n$

RSA Key Construction: Example

□ Select two large primes: p, q, $p \neq q$ p = 17, q = 11

$$n = p \times q = 17 \times 11 = 187$$

- Calculate $\Phi = (p-1)(q-1) = 16x10 = 160$
- □ Select e, such that $lcd(\Phi, e) = 1$; $0 < e < \Phi$ say, e = 7

 \Box Calculate d such that de mod $\Phi = 1$

- ▶ 160k+1 = 161, 321, 481, 641
- > Check which of these is divisible by 7
- > 161 is divisible by 7 giving d = 161/7 = 23
- > Euclid's algorithm is a better way to find this

$$\Box$$
 Key 1 = {7, 187}, Key 2 = {23, 187}

RSA Issues

- **RSA** is computationally intense.
- □ Commonly used key lengths are 512 bits
- □ The plain text should be smaller than the key length
- □ The encrypted text is same size as the key length
- Generally used to encrypt secret keys.
- □ Basis: Factoring a big number is hard

Finding d and e

 $\Box de = 1 \mod \Phi(n)$

□ Select e first, e.g., $e=2^{1}+1$ or $2^{16}+1$

 \Rightarrow Exponentiation is easy.

- □ Find inverse of e using Euclid's algorithm
- □ The public key can be small.
- □ The private key should be large. \Rightarrow Don't select d=3.
- □ Both d and n are 512 bit (150 digits) numbers.

Optimizing Private Key Operations

- 1. $c^d \mod n = c^d \mod pq$
 - > Compute $c^d \mod p$ and $c^d \mod q$
 - > Use Chinese remainder theorem to compute c^d mod pq
- 2. Chinese remainder theorem requires p⁻¹ mod q and q⁻¹ mod p. Compute them once and store.
- 3. Since d is much bigger than p, $c^d \mod p = c^r \mod p$ where r= d mod (p-1)

Attacks on RSA

- □ Smooth Number Attack:
 - > If you sign m_1 and m_2
 - $> S_1 = m_1^d \mod n$
 - $> S_2 = m_2^d \mod n$
 - > Attacker can sign m_1m_2 , m_1/m_2 , m_1^2 , $m_1^jm_2^k$
 - > Easy to do if m_i 's are small (smooth) numbers.
- □ Cube Root Problem of RSA
 - > If public exponent e=3:
 - > $h^{de} \mod n = h$
 - > $h^d \mod n = h^{1/3}$
 - ➤ Simply compute h^{1/3} mod n

Public-Key Cryptography Standards

- □ RSA Inc developed standards on how to use public key cryptography
- □ Specify encoding of keys, signatures, etc.
- □ PKCS #1: Formatting a message for RSA encryption

At least 8 Random nonzero octets 0 0 Data

$$\Box \text{ First octet} = 0 \Longrightarrow m < n$$

- \Box Second Octet = Format Type. 2 \Rightarrow Encryption
- \Box Random non-zero padding \Rightarrow cipher is different
- Zero ends the padding
- PKCS Signing

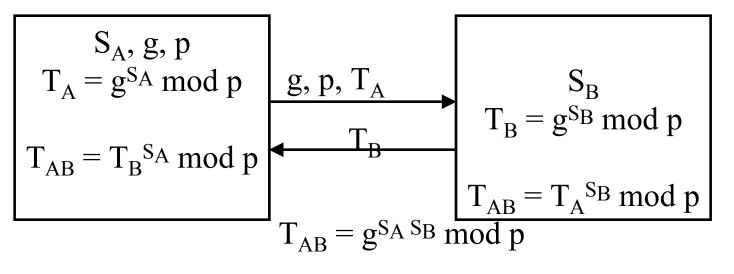
At least 8 octets of FF_{16} 0 Data **CSE571S**

Million Message Attack on RSA

- In SSL if padding is incorrect, some Servers send "Incorrect Padding" error
- Attacker sends random variations until server accepts (decrypted message begins with 02)
- \Box Would need 2¹⁶ tries to get the correct 16 bits
- □ PKCS#1 Rev 2 fixes this problem.
- □ Not sending error message is easier fix.

Diffie-Hellman Key Agreement

- Allows two party to agree on a secret key using a public channel
- □ A selects p=large prime, and g=a number less than p
- □ A selects a random # S_A, B selects another random # S_B



 Eavesdropper can see T_A, g, p but cannot compute S_A
 Computing S_A requires discrete logarithm - a difficult problem <u>CSE5715</u> ©2009 Raj Jain

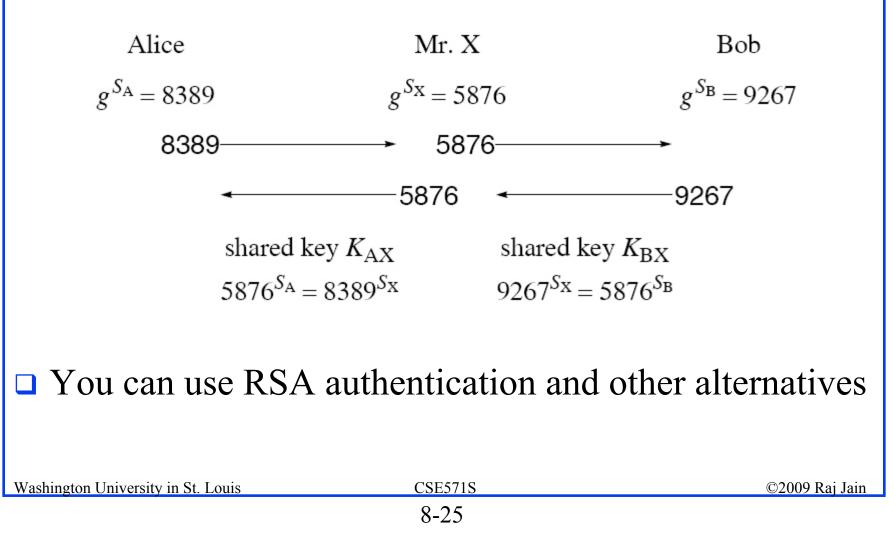
Diffie-Hellman (Cont)

- \Box Example: g=5, p=19
 - > A selects 6 and sends $5^6 \mod 19 = 7$
 - > B selects 7 and sends $5^7 \mod 19 = 16$
 - > A computes $K = 16^6 \mod 19 = 7$
 - > B computes $K = 7^7 \mod 19 = 7$
- □ Preferably (p-1)/2 should also be a prime.

□ Such primes are called safe prime.

Man-in-Middle Attack on Diffie-Hellman

Diffie-Hellman does not provide authentication



ElGamal Signatures

- □ Similar to Diffie-Hellman
- □ Public key: (g, p, T), $T=g^S \mod p$; Private key: S

Signature:

- □ Choose a random S_m , 0< S_m <p-1 and gcd(S_m ,p-1)=1
- □ Compute $T_m = g^{Sm} \mod p$
- Compute $X = (H(m|T_m)S_m + T_m) \mod (p-1)$
- □ If X=0 start over again
- **\Box** The pair T_m , X is the signature.

Verification: Compute $H(m|T_m)$ and g^X and verify:

 $\Box g^{X} = T_{m}T^{H(m|Tm)} \text{ (since } T=g^{S}\text{)}$

- □ Note: Each message needs a different per message key S_m . Two keys: S is the long term key, S_m is the per message key.
- □ If the same key is used on many messages, S can be obtained.

Digital Signature Standard

- □ FIPS 186 in 1991, 186-1 in 1993, 186-2 in 2000.
- □ A variation of ElGamal signature
- \Box Choose a hash. Default = SHA-1
- □ Select a key size L: multiple of 64 between 512 to 1024.
- □ 186-2 requires 1024.
- □ 186-3 recommends 2048 or 3072 for lifetimes beyond 2010.
- **1. Algorithm Parameters:**
- □ Choose a prime q with the same number of bits as hash
- □ Select a L-bit prime p such that p-1 is a multiple of q
- □ Select a generator g such that $g^q = 1 \mod p$
- □ This can be done by $g=h^{(p-1)/q} \mod p$ for some arbitrary h $1 \le h \le p-1$.
- \Box Algorithm parameters (p, q, g) may be shared among users.

Washington University in St. Louis	CSE571S	©2009 Raj Jain
	8-27	

DSS (Cont)

- 2. User Keys: public and private key for a user
- □ Choose S randomly $0 \le S \le p$
- $\Box T = g^{\mathbf{S}} \bmod p$
- □ Public key is (p, q, g, T). Private key is S.
- **3. Signing**: Generate per message key S_m, 0<S_m<q
- $\Box T_m = (g^{S_m} \bmod p) \bmod q$
- $\square Compute S_m^{-1} \mod q$
- \Box Calculate message digest d_m
- Signature $X = S_m^{-1} (d_m + ST_m) \mod q$
- Transmit message m, per message public number T_m, and signature X

DSS (Cont)

4. Verification:

- □ Calculate inverse of signature X⁻¹ mod q
- \Box Calculate message digest d_m
- $\Box Calculate x = d_m X^{-1} \mod q$
- \Box y = T_m x⁻¹ mod q
- \Box z = (g^xT^y mod p)mod q
- \Box If $z = T_m$ then signature is verified.

DSS Insecurity

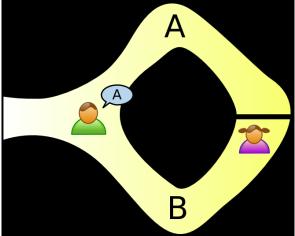
- $\Box < p, q, g > is shared.$
- Anyone who breaks <p, q, g> can break all the users sharing it.
- □ Slower than RSA with e=3
- Both RSA and Diffie-Hellman require sub-exponential super-polynomial effort in key size
- Sub-exponential
 - \Rightarrow Need very large keys for public key cryptography
 - \Rightarrow 1024 for RSA, 80 bit for DES
 - \Rightarrow Use secret keys. Use public for key exchange.

Elliptic Curve Cryptography (ECC)

- Based on algebraic structure of elliptic curves over finite fields
- □ Elliptic curve is a plane curve
- $\Box y^2 + axy + by = x^3 + cx^2 + dx + e$
- The set of points on the curve along with the point at infinity form a set over which operations similar to modular arithmetic can be defined.
- Multiplying two points results in a third point.
 The point at infinity is the identity element.
- ECC is still exponential difficulty and so key lengths can be shorter.

Zero-Knowledge Proof Systems

The verifier can verify that you possess the secret but gets no knowledge of the secret.



[Source: Wikipedia]

Any NP-complete problem can be used.

□ Signature systems are zero-knowledge proof systems

- Public key cryptography uses two keys: public key and private key
- Modular Arithmetic, Euclid's algorithm, Euler's theorm, Fermat's theorem, Chinese remainder theorem
- □ RSA is based on difficulty of factorization
- Diffie-Hellman is based on difficulty of discrete logarithms.
- Digital signature standard is similar to Diffie-Hellman

References

- □ Chapter 6 and 7 of the text book
- □ Wikepedia entries:
 - http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
 - http://en.wikipedia.org/wiki/Chinese_remainder_theorem
 - http://en.wikipedia.org/wiki/Carmichael_number
 - http://en.wikipedia.org/wiki/PKCS
 - http://en.wikipedia.org/wiki/Diffie-Hellman
 - http://en.wikipedia.org/wiki/ElGamal_signature_scheme
 - http://en.wikipedia.org/wiki/Digital_Signature_Standard
 - http://en.wikipedia.org/wiki/Elliptic_curve_cryptography
 - http://en.wikipedia.org/wiki/Zero_Knowledge

Homework 8

- □ Read chapter 6 and 7
- 8a. In an RSA system, the public key of a given user is e=31, n=3599. What is the private key of this user.
- 8b. If x = 3 mod 7 = 5 mod 13 = 8 mod 11. What is x?
 Show all steps.