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Abstract

Kerberos was initially developed at MIT as a part of Project Athena and in these days it is widely deployed
single sign-on protocol that is developed to authenticate clients to multiple networked services. Furthermore,
Cross-realm authentication is a useful and interesting component of Kerberos aimed at enabling secure access to
services astride organizational boundaries. Also, Kerberos has continued to evolve as new functionalities are
added to the basic protocol and one of well-known these protocols is PKINIT. First, I review and analyze the
structure of Kerberos recently proposed and the cross-realm authentication model of Kerberos. Also, I discuss
PKINT, an extension version of Kerberos, which modifies the basic protocol to allow public-key authentication.
Although Kerberos has been proven its strengths so far, it also has a number of limitations and some flaws. I
dedicate my efforts to an analysis of PKINIT and mainly focus on a number of vulnerability, flaws and attacks
lately discovered on Kerberos as well as PKINIT in this paper. Lastly, I introduce several possible solutions to
enhance Kerberos.
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1 Introduction

Kerberos was initially designed at MIT as a part of Project Athena [Neuman06] . It has been successfully
deployed as a single sign-on protocol that is designed to authenticate clients to multiple different network
services. There have been two different versions of the protocol in widely used, known as Kerberos 4 and 5.
Kerberos 5 is the most recently proposed and is a trusted third-party authentication mechanism designed for
TCP/IP networks. It uses strong symmetric cryptography to enable secure authentication in an insecure
network. Currently it is available for all major operating systems, e.g., Linux, Microsoft Windows as well as
Apple's OS X. Furthermore, Kerberos 5 has been improved as new functionalities are added to the basic
protocol and one of these results is known as PKINIT [Zhu05] (Public-Key Cryptography for Initial
Authentication) which modifies the basic protocol to allow public-key authentication and it causes considerable
complexity to the protocol.

Regarding the security issues of Kerberos, it has been discussed in several papers which represents possible
weak points including replay attacks, password attack against Ticket-Granting tickets or pre-authentication data,
attacks against network time protocols (Kerberos requires time synchronization) and malicious client software.
Furthermore, a guessing attack and particularly man-in-the-middle attack in PKINIT have been discovered.
Before discussing flaws and weakness of Kerberos, in Section 2-4, an analysis of the structure of Kerberos 5,
intra- and cross-realm authentication as well as a detailed description of PKINIT will be reviewed.

In Section 5-7, I discuss the flaws and attacks on Kerberos. In Section 5, I focus on the attacks on the basic
protocol, Kerberos 5 without PKINIT, such as the password attack, reply attack and guessing attack. Firstly,
regarding the reply attack, I reason that it is feasible by presenting attacks on both SMB and LDAPv3. An
attacker will be able to access file shares and modify directory entries with the victim's credentials. Some server
implementations have actual weaknesses, while others have default configurations that make the attack
possible. Secondly, I show that a password attack is feasible, thus allowing the attacker to discover weak user
passwords. Pre-authentication data are used for this attack. A replay attack is presented with the SMB protocol.
This allows an attacker to access file shares with the victim's credentials without actually knowing the password.
Lastly, in many computer systems, users are authenticated via passwords which they choose. Unfortunately,
people tend to choose easy-to-remember passwords, which are vulnerable to guessing attacks. A malicious
attacker can guess such passwords using the words in a machine-readable dictionary. I show that Kerberos is
one of many existing authentication protocols which are vulnerable to so-called off-line guessing attacks, and In
Section 8, I will discuss some useful guidelines to be secure against guessing attack as well as other attacks.
Based on these guidelines, I will discuss a possible solution to enhance Kerberos protocol so that it can resist the
each of attacks.
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In Section 6, I discuss the attack on PKINIT, particularly man-in-the-middle attack, which allows an attacker to
impersonate Kerberos administrative principals Key Distribution Center(KDC) and end-servers to a client,
therefore breaching the authentication guarantees of Kerberos. It also gives the attacker the keys that the KDC
would normally generate to encrypt the service requests of this client, hence defeating confidentiality as well, In
Section 7, I will discuss about the possible enhancement for scalability and reliability issues in Kerberos
cross-realm operation, followed by in Section 9, I provide some concluding remarks.

2 Kerveros V Basic

Networked computer systems provide a great number of shared resources at a user's fingertips; without leaving
one's desk, remote hosts, file servers, printers, and many other networked services are readily at hand.
Authentication and other security mechanisms are needed so that this convenience is not abused, especially
where one's personal computer or organization network is at the risk of dangerous backdoors when connected to
the Internet. A simple solution to this problem, requiring users to authenticate to each service they use (for
example using a password) is not only inconvenient, but also insecure in practice as people are poor at dealing
with a large number of different passwords.

The Kerberos protocol was designed to provide transparent access to all the networked resources a legitimate
user needed for a typical day once he/she logs on his/her terminal [Neuman06] . For example, each time the
user needs to retrieve a file from a remote server, the required authentication will be handled by Kerberos
securely behind the scene, with no user's intervention needed.

This section will review how the latest verion of this protocol, Kerberos 5 [Neuman06] , achieves secure
authentication based on a single logon, and for the time being on situations where all the authentications take
place within the same administrative domain (or realm) without PKINIT.

2.1. Principals

The informal example above has described three of principals, that form a typical Kerberos exchange: the
human user at his/her terminal, the client process that recognizes the user's password and transparently handles
the authentication of each request on the user's behalf, and the requested services, or servers in Kerberos
terminology. Kerberos relies on two additional administrative principals together, namely the KDC: the
Kerberos Authentication Server (KAS) which authenticates the user and provides the corresponding client with
credentials to use the network for a typical day, and the Ticket Granting Server (TGS) which authenticates the
client to each requested server based on those credentials. The high-level picture is given in Figure 1.
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Figure 1: An Overview of Kerberos V Operation

The top of the figure represents the daily authentication process to Kerberos: as the user (U) logs on, the KAS
authenticates the client process representing the user and provides credentials to use the system for that day.
These credentials from the KAS are called the Ticket Granting Ticket (TGT). Whenever the user wants to use a
networked service, the client on his/her behalf will seek authentication to the process S managing this service.
This is done in two steps: the first time U attempts to access S, C presents the TGT from the KAS to the ticket
granting server (TGS) who will in turn provide credentials for S. These credentials are called the Service Ticket
(ST). Every subsequent time U wants to access this particular service, C forwards ST to S, without involving the
TGS. The line at the bottom of the figure represents the actual use of the desired service: this is all the user sees
as the client process handles the authentication overhead.

The above mode of interaction represents a typical single organization, or realm in Kerberos terminology. Each
realm is regulated by a single KDC, although there may be synchronized replicas for performance and fault
tolerance reasons. Within a realm, there will be generally multiple clients and multiple servers. Intra-realm
authentication, as this modality is known, is widely deployed and has been extensively studied. Kerberos also
supports cross-realm authentication [Bella07] [Butler01] [Mitcell08] , a scheme by which a client in a realm R1
can access a service in a different realm Rn. The rest of this paper will explore how Kerberos achieves
cross-realm authentication. Firstly, let's recall how the basic intra-realm protocol works.

2.2. Message Exchange within the same administrative realm

This section focuses on the messages exchanged during a typical intra-realm authentication session between a
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client C and a server S, as shown in the box of Figure 1 [Cervesato09] . Sufficient detail is provided to support
their formal specification in the next section. However, it is important to notice that Kerberos is far more
complex than the abstract view given here. The simplified version of the Kerberos 5 exchanges is given in
Figure 2: the top part relies on the traditional "Alice-and-Bob" notation, with the standard name [Figure 2] for
each message given on the left. I will now explain each of the three roundtrips between a client (C) and the
KAS (K), the TGS (T), and a server (S), respectively.

Figure 2: Message Exchange within the same administrative realm

Authentication Service Exchange (C <—@gt; K):

This exchange takes place as the user first logs on to a Kerberized network. The client process C
generates a nonce n1 and sends it to the KAS together with its own name, C, which represents the user,
and the name of the TGS (officially "krbtgt", here abbreviated as T).
After recognizing C, the KAS replies with a message containing two encrypted components: the ticket
granting ticket (TGT) {AK,C, tK}kT that is cached by C and will be used to obtain service tickets for the
rest of the day, and {AK, n1, tK, T}kC with which the KAS informs C of the parameters of the ticket. AK
is the autentication key and the TGT is meant for the TGS and is encrypted with the long-term key kT
that the KAS shares with the TGS. It contains a newly generated authentication key AK and a timestamp
tK in addition to C's name. The key kC used to encrypt the second component is a longterm secret
between C and the KAS derived from the user's password. AK will be used in every subsequent
communication with the TGS, sparing the more vulnerable kC. The timestamp tK will assure the TGS and
C that this ticket was issued recently, as all Kerberos agents have loosely synchronized clocks. The nonce
n1 in the second component binds this response to C's original request.

Ticket Granting Exchange (C <—@gt; T ):

A Survey of Kerberos V and Public-Key Kerberos Security

http://www.cse.wustl.edu/~jain/cse571-09/ftp/kerb5/index.html 5 of 21



This exchange takes place the first time U attempts to access a service S. In the outgoing message, C
transmits the cached TGT and S's name together with a newly generated nonce n2, and the authenticator
{C, t}AK, where t is a timestamp. The authenticator proves to T that C actually knows the authentication
key AK.
After authenticating C and verifying that it is allowed to use S, the TGS sends a response with the same
structure as the second message above except the service ticket {SK,C, tT }kS is now encrypted with the
long-term key shared between the KDC and S, and it contains a freshly generated service key SK, C's
name, and a timestamp tT . The other encrypted component is as in the second message above, but now
encrypted with the authentication key AK. C caches the service ticket.

Client/Server Exchange (C <—@gt; S):

This exchange takes place each time the client initiates a new session with the server S. With a service
ticket in hand, C simply contacts S with this ticket and an authenticator similar to the one described
above.
The response from S is optional as the subsequent application exchanges may subsume it. When present,
it provides assurance to C that S is alive, for example by returning the timestamp t0C that C included in
its request, encrypted with the service key.

2.3. Security Consideration

One weakness of the standard Kerberos protocol lies in that the key kC used to encrypt the client's credentials is
derived from a password, and passwords are undoubtedly vulnerable to dictionary attacks [Newman01]. In
addition, since the initial request is completely plaintext, an active attacker can repeatedly make requests for an
honest client's credentials and accrue a large number of plaintext-ciphertext pairs, the latter component being
encrypted with the client's long-term key kC (which is derived from a password). While the attacker is unable to
use these credentials to authenticate to the system, he is given considerable opportunity to perform an active
dictionary attack against the key.

Kerberos can optionally use pre-authentication, a feature designed to prevent an attacker from actively
requesting and obtaining credentials for an honest user. Pre-authentication functions by requiring the client to
include a timestamp encrypted with his/her long-term key in the initial request. The authentication server will
only return credentials if the decrypted timestamp is recent enough. This method successfully prevents an
attacker from actively obtaining ciphertext encrypted with the long-term key; however, it does not prevent
passive dictionary attacks, i.e., a passive attacker could eavesdrop on network communications, record
credentials as the honest client requests them, and attempt off-line dictionary decryption. Hence,
pre-authentication makes it slower for an attacker to perform cryptanalysis against the user's long-term key, but
it does not prevent the attack. PKINIT, along with a number of other methods, aims at eliminating this
dictionary attack vulnerability. In Section 4, I will introduce PKINIT and concentrate on the PKINT attack in
Section 6.

3. Kerberos Cross-Realm Authentication

Kerberos supports authentication across organizational boundaries by permitting clients and servers to reside on
different realms. A realm consists of a group of clients, a KDC, and application servers. For example, the
Network Security group in the CSE Department of Washington University in Saint Louis may create an
independent realm RNS with its own users, services and administrators. Similarly, the CSE department may
organize a Kerberos realm RCSE to allow CSE members to access shared resources, and the University may as
well have a realm RW to operate university-wide resources such as printers and scanners in computer labs.
Cross-realm authentication enables a student at her workstation in the Network Security group to transparently
access a file on the common CSE server, and even to smoothly print it on a printer in any computer lab. Without
cross-realm authentication this student would need a separate account in each realm, log onto each of them, and
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transfer files from account to account in order to achieve the same goals. This is inconvenient, not scalable, and
less secure as several passwords would be needed, one for each realm.

In the simplest case, the cross-realm authentication of a client C in realm R1 to a server S in Rn is accomplished
by registering the KDC of Rn as a deginated server in R1 and using a variant of the intra-realm protocol to first
acquire a TGT for C in R1. And then, a ST for Rn's KDC seen as a local service in R1 [Cervesato09] . This ST
has the same format as a TGT for C in Rn, and as such it is submitted to the KDC of Rn to obtain a service
ticket for accessing S. The key used by R1's KDC to encrypt the ticket for the special service corresponding to
Rn's KDC is called a cross-realm key. This is all Kerberos 4 allows. In Kerberos 5, C's access to S may require
traversing intermediate realms R2, ... , Rn-1 if there is no cross-realm key between R1 and Rn, but R1 has such
a partnership with R2, R2 with R3, etc. up to Rn. C then needs to obtain a TGT for each of these realms in
succession before accessing S. The list of traversed KDC's [R1, ... ,Rn] is called the authentication path of C's
access to S. This highlevel description [Cervesato09] is schematically shown in Figure 3.

Figure 3: Schematic Cross-Realm Authentication

3.1. Issues in Kerberos Cross-Realm Operation

In the following sections, I will introduce several issues related to cross-realm operations followed by a
discussion on the possible ways to enhance it. The cross-realm operations in Kerberos allows users to access
services offered by foreign realms either in roaming scenarios where the user is physically located in a visited
realm or in remote access scenarios where the user needs to access the remote application service from his/her
home realm.

Inter-realm trust management:

In Kerberos, the cross-realm operations assume that realms have direct or indirect trust relationship. A
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direct trust relationship means that the realms involved in the cross-realm authentication share keys and
their respective TGS principals are registered in each other's KDC. When direct trust relationships are
present, the KDC of each realm must maintain keys with all foreign realms. This can become a
cumbersome task as the number of realms increases. Therefore, cross-realm authentication based on
indirect trust relationships offers better scalability.
On the other hand, indirect trust relationship means that there is a 'chain of trust' linking two realms. By
having a common trusted realm or a chain of intermediary trusted realms can realize this. If the realms
belong to the same institution, a chain of trust can be determined by the client or the KDC by following
the DNS domain hierarchy and supposing that the parent domains share keys with all its child
sub-domains [Neuman 01]. However, if the inter-realm trust model does not follow the hierarchical
approach, the trust paths must be specified manually. In such case, the management of inter-realm trust
may become a quite troublesome task.

Reliability and Forward Secrecy:

When intermediary realms are involved, the success of cross-realm authentication completely depends on
the realms that are part of the authentication path. If any of the realms in the authentication path are not
available, the principals of the end-realms will not be able perform cross-realm operations. This
constitutes a reliability issue that can fail Kerberos as a promising authentication system for mission-
critical deployments such as large factory automation and military applications.
Furthermore, any KDC in the authentication path can learn the session key that will be used between the
client and the desired service, this means that any intermediary realm is able to misrepresent the identity
of the service and the client as well as to eavesdrop on the communication between the client and the
server [Mitcell08] . If an intermediary KDC is corrupted, all authentication operations using the corrupted
KDC will be corrupted. The forward secrecy issue in cross-realm operations is a serious problem, which
makes the whole web of trust as vulnerable as the weakest KDC.

Client centralized exchanges:

During cross-realm operations, Kerberos clients have to perform TGS exchanges with all the KDCs in the
trust path, including the home KDC and the target KDC. In the case where the client has limited
computational capabilities, the overhead of these cross-realm exchanges may grow into unacceptable
delays. Moreover, if the number of intermediary realms increases, the delay caused by the cross-realm
messages can result in unacceptable delays independently from the hardware characteristics of the user's
device.

4. Public-Key Kerberos: PKINIT

PKINIT is known as an extension to Kerberos 5, which uses public key cryptography to avoid shared secrets
between a client and KAS [Zhu05] ; it modifies the AS exchange. However, other parts of the basic Kerberos 5
protocol are the same. The long-term shared key (kC) in the traditional AS exchange is typically derived from a
password, which limits the strength of the authentication to the user's ability to design and memorize good
passwords; PKINIT does not use kC and thus solves this issue. Also, PKINIT allows network administrators to
use an existing public key infrastructure (PKI) rather than expend additional effort on managing users' long-term
keys needed for traditional Kerberos. This protocol extension adds complexity to Kerberos as it retains
symmetric encryption in the later rounds but relies on asymmetric encryption, digital signatures, and
corresponding certificates in the first round [Tsay03] .

In PKINIT, the client C and the KAS has independent public/secret key pairs, e.g.,(pkC, skC) and (pkK, skK).
Certificate sets CertC CertK issued by a PKI independent from Kerberos are used to testify the binding between
each principal and its purported public key [Tsay03] . This simplifies administration as authentication decisions
can now be reached based on the trust the KDC holds in just a few known certification authorities within the
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PKI, rather than keys individually shared with each client. Dictionary attacks are defeated as user-chosen
passwords are replaced with automatically generated asymmetric keys. The login process changes as very few
users would be able to remember a random public/secret key pair. In Microsoft Windows, keys and certificate
chains are stored in a smartcard that the user swipes in a reader at login time. A passphrase is generally required
as an additional security measure [Clercq10] . Other possibilities including keeping these credentials on the
user's hard drive, are again protected by a passphrase.

In RFC 4556 [Zhu05] , as the PKINIT extension to Kerberos has recently been defined after a sequence of
Internet Draft found in [IETFSeq04] , Cervesato et al. use "PKINIT-n" to refer to the protocol as specified in
the nth draft revision and "PKINIT" for the protocol more generally and these drafts and the RFC can be found
at [IETFSeq04] .

There are two operation modes in PKINIT. First, in public-key encryption mode, the key pairs,e.g.,(pkC, skC)
and (pkK, skK), are used for both signature and encryption. The latter is designed to protect the confidentiality
of AK, while the former ensures its integrity. Another mode is known as Diffie-Hellman (DH) mode, the key
pairs are used to provide digital signature support for an authenticated Diffie-Hellman key agreement which is
used to protect the fresh key AK shared between the client and KAS. A variant of this mode allows the reuse of
previously generated shared secrets. In the following section, I will take a look more detail about these two
modes.

4.1 Public-key encryption mode

In PKINIT-26, the AS exchange is illustrated in Figure 2. In discussing this and other descriptions of the
protocol, Cerversato et al. write [m]sk for the digital signature of message m with secret key sk. (PKINIT
realizes digital signatures by concatenating the message and a keyed hash for it, occasionally with other data in
between). Cerversato et al. make the standard assumption that digital signatures are unforgeable
[Goldwasser11] . Denote that the encryption of m with public key pk is {{m}}pk because, as earlier, I indicated
that {m}k is for the encryption of m with symmetric key k.
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Figure 4: Public-key encryption mode

First line in Public-key Encryption mode:

This shows the relevant parts of the request that a client C sends to a KAS K using PKINIT-26. The last
part of the message "C, T, n1" is exactly the same as in basic Kerberos 5, containing the client's name, the
name of the TGS for which he/she wants a TGT, and a nonce. The "boxed" parts are added by PKINIT
and contain the client's certificates CertC and his/her signature (with the secret key skC) over a
timestamp tC and another nonce n2. The nonces and timestamp to the left of this line indicate that these
are generated by C particularly for this request, with the box indicating data not included in the abstract
formalization of basic Kerberos 5 [Tsay03] [Butler01] . This effectively implements a form of
pre-authentication.

Second line in Public-key Encryption mode:

This shows the formalization of K's response, which is more complex than that of basic Kerberos. The last
part of the message "C, TGT,{AK, n1, tK, T}k"is very similar to K's reply in basic Kerberos; the
difference boxed is that the symmetric key k protecting AK is now freshly generated by K and not a
long-term shared key. The TGT and the message encrypted under k are as in traditional Kerberos.
Because k is freshly generated for the reply, it must be informed to C before C can learn AK. PKINIT
does this by adding the boxed message {{CertK, [k, n2]skK}}pkC. This contains K's certificates and its
signature, using its secret key skK, over k and the nonce n2 from C's request; all of this is encrypted under
C's public key pkC.

4.2 Diffie-Hellman mode

I will briefly describe the Diffie-Hellman (DH) mode of PKINIT in this section, although Cervesato's
preliminary investigation did not reveal any flaw in this mode [Butler02] . It should be noted that this mode
appears not to have been included in any of the major operating systems. The only support can be found is
within the PacketCable system [CTL12] , developed by CableLabs, a cable television research consortium.

In the DH moed, except that k is generated by a Diffie-Hellman key exchange instead of the KDC using some
key generation algorithm, it is very simliar to the public-key encryption mode. Figure 5 shows the messages
involved. The first message is the same except the signature contains, in addition to a timestamp and nonce,
Diffie-Hellman parameters and C's public Diffie-Hellman value.

Figure 5: Diffie-Hellman mode
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This will perform the same verification actions as in the public-key mode and K will also check that the
parameters for the Diffie-Hellman key generation are acceptable when K receives this message. For instance,
the system administrator may configure a minimum key length. If everything is valid then K will send a reply as
in the second message of Figure 5. K's reply is again similar to the public-key encryption method, except that
now it is unnecessary to encrypt the information used to obtain k. This is because k is derived from a Diffie-
Hellman key exchange and, under the common assumption that discrete logarithms cannot be computed in
polynomial time, learning the public values gives an attacker no information about the actual derived key. K
sends n2 and its public Diffie-Hellman value DHpubK signed to C. The signature is necessary for ensuring that
DHpubK was created and sent by K.

C receives K's reply and validates it by checking K's certificate and the signature across DHpubK, n2. If
everything is valid then C computes the Diffie-Hellman shared secret using DHpubK and its own private Diffie-
Hellman value, and then can use the shared secret to derive k. C will then decrypt the authenticator and the
protocol proceeds as per the standard Kerberos protocol. Since Diffie-Hellman key generation is expensive, it is
desirable to reduce the load on the KDC by reusing Diffie-Hellman shared secrets.

For this reason a variant of the DH mode exists which reuses previously generated Diffie-Hellman shared
secrets to derive new keys. In this mode the first message is identical to that of the DH mode except C also
includes an extra nonce nC in the signed data. This nonce will be used to compute the new key from the existing
Diffie-Hellman secret.

5. Attacks on Kerberos V

Kerberos V implicitly relies on the servers being secure and software being nonmalicious. However, the most
interesting assumptions are the ones about password guessing and replay attacks. Both attacks are non-trivial
but could be carried out over the local network. Password guessing attacks can be based on any text encrypted
with the key derived from the victim's password, and will result in exposure of the plaintext password. Replay
attacks will usually result in the attacker assuming the victim's identity without actually recovering the
password. We will discuss both attacks in the next chapter.

In the following sections, I discuss how an attacker might hijack a network connection allowing active
monitoring and modification of the victim's network traffic.

5.1 Hijacking a Network Connection on a Switched Network

According to Kasslin and Tikkanen [Kasslin14] , to hijack a network connection of the target machine we have
to be able to direct the flow of network traffic from the target machine to our machine. The rest is accomplished
by redirecting the packets in the kernel level. This problem can be solved by the weaknesses of the ARP
(address resolution protocol). The ARP is a stateless protocol so it is completely legal by the protocol to send
ARP reply packets to the target machine even if it has not send any ARP requests yet.

This makes it possible for the attacker to send forged ARP reply packets continuously to the victim where the
MAC address is forged to correspond to the one of the attacker's machines. Usually when you want to sniff the
traffic originating from a machine, you need to spoof the gateway of the network.

5.1.1 Analysis of this Attack

The tool required for this attack are already implemented. We only need one tool from this package: arpspoof.
Iptables is available on most Linux distributions by default.

The ARP spoof is carried out as follows [Kasslin14] :
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First make sure that the attacking machine has ip-packet forwarding enabled
On RedHat Linux 8.0 this can be accomplished by executing the command:

echo 1 > /proc/sys/net/ipv4/ip_forward
From the attacking machine run the following command:

arpspoof -t [ip address of the victim] [ip-address of the gateway]
Packet redirection is done with iptables with the following commands:

iptables -t nat -A PREROUTING -i eth0 -p tcp -s [victim ip] -d [server ip] --dport [dest_port] / -j
REDIRECT --to-port [dest_port_on_attacker_machine]

Now traffic to the port [dest_port] from the victim to the server is redirected to the attacker's IP address
with destination port [dest_port_on_attacker_machine].

The hijacking attack allows the network traffic from the victim to be easily monitored and controlled by the
attacker on a switched network. As a result of the ARP spoofing attack all the traffic from the victim can be
routed to the client through the attacking machine. This situation allowed us to launch the replay attack on
Kerberos 5 and SMB

.

5.1.2 Protecting your environment against this attack

Network connection hijacking can be done in many ways. Here I take the solutions against ARP spoofing for
discussion [Kasslin14] . There are two well known ways to detect ARP spoofing attempts monitoring the local
ARP cache and monitoring the network traffic on the wire. ARP cache monitoring on a local machine can be
accomplished with the arpcommand. This can be done automatically with a tool called arpwatch. Network
traffic monitoring can be implemented with certain Intrusion Detection Systems. The Open Source IDS called
Snort is able to do this in real time.

One of the best ways to protect machines against ARP spoofing attacks is to enforce static ARP entries on the
local machines, especially the entry for the local gateway should be static.

5.2 Password Attack

The Microsoft Windows implementation of Kerberos 5 protocol requires the use of the pre-authentication data
in the KRB_AS_REQ message by default, which makes it harder to implement offline password attacks
[Kasslin15] . If pre-authentication is not used, anyone can make a request for a TGT from the KDC (Key
Distribution Center) and launch an offline password attack against it. The default implementation of
pre-authentication data in Windows consists of an encrypted Kerberos timestamp created with a key derived
from the user's password and a cryptographic checksum.

If an attacker is able to monitor the network traffic between the victim and the KDC server, a password attack
becomes possible. This is based on the fact that before encryption the Kerberos timestamp is an ASCII-encoded
string with the syntax "YYYYMMDDHHMMSSZ". This information makes it possible to find a valid password
by running a dictionary or brute force attack against the encrypted timestamp. The correctness of the result can
be verified by calculating the checksum. The detailed descriptions of the cryptographic operations are provided
in [Song16] .

5.2.1 Analysis of this Attack

This attack shows that the pre-authentication scheme based on the symmetrically encrypted timestamp is very
vulnerable to the dictionary and brute force attacks [Kasslin15] . It was trivial to gather pre-authentication data
between the victim and the KDC server by passively monitoring the network traffic. Dictionary attacks were
successfully launched against weak passwords. It can be concluded that the feasibility of this attack depends
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mainly on the strength of the used passwords.

To make it easier to perform this attack Kasslin and Tikkanen created two new tools. The first tool [Kasslin17]
is a network sniffer which monitors the network traffic in promiscuous mode and collects pre-authentication
data from the KRB_AS_REQ messages. The second tool [Kasslin18] performs a dictionary attack against the
data collected by the first tool.

5.2.2 Protecting your environment against this attack

This attack is accomplished by passively listening to the network traffic between the victim and the Kerberos
KDC server. The only way to detect this is by monitoring the network for symptoms which might show a hint
that someone is running a sniffer on the network.

This attack will become infeasible if a strong password policy is implemented. The Windows implementation of
Kerberos 5 also supports another pre-authentication method in addition to the password-based. As discussed,
PKINIT does not suffer from the weakness described here. Another effective way to prevent this attack is to
encrypt the network traffic, for example by using IPSEC.

5.3 Reply Attack

Replay attacks against Kerberos 5 are targeted on the final message transferred from the client to the server,
called the KRB_AP_REQ message [Kasslin19] . An attacker will attempt to capture this message and reuse its
data to authenticate himself as the victim. If successful, the attacker will have full access to the same service the
victim accessed. However, He will not be able to recover the victim's actual password. This attack requires that
traffic from the victim to the server is subverted to the attacker's network address. This can be achieved with a
hijacking attack described in Section 5.1. In SMB case, there are two questions we need to answer regarding this
issue.

The first question is about the handling of the authenticators by the Windows Server. If a server does not
cache used authenticators, replay attacks become much easier, as the attacker only has to passively
monitor the network traffic from the victim. If a cache is used, the attacker has to actively prevent the
server from seeing the security blob sent by the victim.
The other question is on the network addresses in tickets. The address included in a service ticket is
optional according to [Kasslin20] , but is still highly recommended. This field would limit the use of the
ticket to pre-defined hosts, and make replay attacks more difficult, as the attacker would be forced to use
the victims IP address when replaying the credentials.

5.3.1 Analysis of this Attack

We can conclude from the results of Kasslin and Tikkanen's research that replay attacks against SMB and
Kerberos 5 on a Windows domain are feasible. An attacker will be able to use the victim's credentials to access
file shares. Kasslin and Tikkanen's research shows that the Windows Server SP3 does actually cache used
authenticators. the attempt to replaying used authenticators failed, because the server refused to accept them.
This indicates that an attacker must use an active man-in-the-middle attack to listen on the SMB session setup
and prevent the server from seeing the credentials the victim sends. As such, when the attacker replays the
security blob, and the server has not seen the authenticator, the attack succeeds. Kasslin and Tikkanen's
research shows that the Windows Server SP3 acting as a file server either does not verify the address field or
the Windows KDC does not include it in the tickets it issues. This means that an attacker, once he has captured
the victim's security blob, may reuse it from his own network address. This makes replay attacks easier.

A tool to perform such an attack, [Kasslin21] is a proxy that listens to connections on the attacker's machine,
forwards session negotiations between the real server and the victim and captures the security blob inside the
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Session Setup AndX message.

5.3.2 Protecting your environment against this attack

To detect a replay attack, one option would be to attempt detecting ARP spoofing altogether. This is described
in more detail in section 6.1. If this is successful, the attack becomes infeasible. The victim can also detect a
possible attack if attempted connections seem to fail. When an attack is under way, the victim will see an error
message stating that the service is not available. This is because the attacker will stop proxying traffic to the
server after capturing the security blob. However, this is not an efficient solution, since such errors are also
possible in normal circumstances [Kasslin19] . Also, counting on users in such problems is probably not the best
choice. The detection of this attack is very difficult. More effort should be made on preventing it from
happening. This is possible in a number of ways, among which, the most efficient is to use some form of
encryption on the IP layer. The use of IPSEC would be a sufficient protective action. However, using it to
encrypt all client-to-server traffic is very difficult. SMB signing, which is available on some implementations,
can be used to prevent replay attacks.

In brief, when signing is enabled, packets will include a cryptographic MD5 checksum created with a session
key to ensure their integrity. There is a significant pitfall. Servers usually support SMB signing, but do not
require that clients always use it. If the victim is using SMB signing, the connection can still be attacked. The
security blob is easily extracted, since no encryption is used. If the attacker is then allowed to connect to the
server with the stolen credentials without signing, the attack will succeed.

The server must require SMB signing for all connections for the attack to fail. In this case, the attacker will not
know the key to create the checksums, and therefore cannot create a connection. If SMB connections have to
be made in an unsafe network, other authentication methods such as NTLMv2 are highly possibly safer than
Kerberos [Kasslin19] [Kasslin20] . Replay attacks on such challenge-response mechanisms are not possible, but
dictionary attacks on weak passwords surely are.

6. Attacks on Public-Key Kerberos

In this section, I discuss a dangerous attack against PKINIT in public-key encryption mode [Cervesato13] . I
start with a detailed description of the attacker's actions in the AS exchange, the key to the attack, followed by
an explanation of the conditions required for the attack. Then I close this section with a discussion on how the
attacker may propagate the effects of his AS exchange actions throughout the rest of a protocol run.

6.1 How to break Public-Key Kerberos

Figure illustrate "man-in-middle-attack". As a consequence of this attack, C believed to be talking to KAS, is
talking to I instead and this causes a failure of authentication problem. Also, regarding a failure of
confidentiality, I knows AK and k, then C believes that KAS produced AK and k just for her. Note for this
attack is as the following:

This is a deterministic attack1.
The attacker(I) must be a legal user, otherwise KAS would not talk to him.2.
C is authenticated to S as I (not as C). The attacker (I) does not trick S to believe he is C. The attacker (I)
can observe all communications between C and S and I can also pretend to be S to C

3.

Diff-Helman mode appears to avoid this attack; however, it still needs to formally prove security for DH4.
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Figure 6: Message flow in the man-in-the-middle attack on PKINIT

6.2 Effects of this attack

Attacker observes traffic and learns keys in replies:

If the attacker learns AK in the AS exchange, he may either mediate C's interactions with the various
servers (essentially logging in as I while leaking data to C so she believes she has logged in) while
observing this traffic or simply impersonate the servers in the later exchanges. In the first, which is shown
in Figure 6, once C has AK and a TGT, she would normally contact the TGS to get a service ticket for
some application server S. This request contains an authenticator of the form {C, tC,T }AK (i.e., C's
name and a timestamp, encrypted with AK). Because I knows AK, he may intercept the request and
replace the authenticator with one that refers to himself: {I , tI ,T }AK. The reply from the TGS contains
a freshly generated key SK; this is encrypted under AK, for C to read and thus accessible to I, and also
included in a service ticket ST that is opaque to all but the TGS [Cervesato13]

Attacker impersonates servers:

It is possible that the attacker can intercept C's requests in the TG and CS exchanges and impersonate the
involved servers instead of forwarding altered messages to them; the message flow for this version of the
attack is shown in Figure 6. In the TG exchange, I will ignore the TGT and only decrypt the portion of the
request encrypted under AK (which he learned during the initial exchange). The attacker will then
generate a bogus service ticket XST , which the client expects to be opaque, and a fresh key SK
encrypted (along with other data n3, tT , S) under AK, and send these to C in what appears to be a
properly formatted reply from the TGS. In the CS exchange the attacker may again intercept the client's
request; in this case, no new keys need to be generated, and the attacker only needs to return the client's
timestamp encrypted under SK which I himself generated in the previous exchange for C to believe that
she has completed this exchange with the application server S. Note that the attacker may take the first
approach mediating the exchange between C and a TGS in the TG exchange and then the second
impersonating the application server in the CS exchange. The reverse is not possible because I cannot
forge a valid ST for S when impersonating T.
Despite which approach the attacker uses to propagate the attack throughout the protocol run, C finishes
the CS exchange believing that she has interacted with server S and that T has generated a fresh key SK
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known only to C and S. But in fact, I knows SK in addition to, or instead of, S (depending on how I
propagated the attack). Thus I may learn any data that C attempts to send to S; depending on the type of
server involved, such data could be very sensitive. Note that this attack does not enable I to impersonate
C to a TGS or an application server because all involved tickets name I; Section 6.2 discusses a related
authentication property. This also means that if C is in communication with an actual server (T or S), that
server will view the client as I , not C.

6.3 Detecting and preventing this attack

What's wrong with PKINIT-26:

As shown in Figure 7, there is misbinding of request and reply. Hence, the attacker can both tamper with
signiture in request and with encryption in reply [Cervesato13] . Having traced the origin of the
discovered attack to the fact that the client cannot verify that the received credentials (the TGT and the
key AK) were generated for her, the problem can be fixed by having the KAS include the client's name,
C, in the reply, in such a way that it cannot be modified enroute and that the client can check it.

Figure 7: Message in the man-in-the-middle attack on PKINIT-26

Solution adopted in PKINIT version 27:

Currently, the solution adopted in PKINIT-27 and current candidates for H include hmac-sha1-96-
aes128. New strong keyed checksums can be used for ck as they are developed. The checksum-based
approach was later included in PKINIT-27 [Cervesato13] . The message flow of this version of PKINIT is
displayed in Figure 8. Here, ck is a checksum of the client's request keyed with the key k, that is ck has
the form Hk(CertC, [tC, n2]skC ,C, T, n1) where H is a preimage-resistant MAC function. This means
that it is infeasible for the attacker to find a message whose checksum matches that of a given message.

Figure 8: Fix Adopted by PKINIT-27
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7. Improving Kerberos for Cross-Realm Collaborative Interactions

As discussed in Section 3, the Kerberos has some issues related to the cross-realm operations. These issues are
related to the inter-realm trust management and client centricity of the proto col exchanges. The inter-realm
trust in the current specification is managed through shared secret keys. This method is not scalable when the
number of realms increases. The client centricity of the Kerberos protocol exchanges on the other hand puts all
the load of cross-realm operation on the client side. For devices such as PDAs and sensors, this processing could
result in unacceptable delays. In order to solve these issues, recently, the Extensible Key Distribution Center
Protocol(XKDCP) is new proposed for the cross-realm operations in Kerberos [Zrelli23]

7.1 XKDCP

Once again, there are some frameworks of public-key based trust relationship (e.g., RADIUS or EAP) is well
established and widely adopted nowadays. It is viewed as the most scalable and safe way of conveying
autgebtucation. However, public-key based authentication system is considerably expensive and is not suitable
for devices with low computational power. As one of ths feasible solutions, the XKDCP protocol consists of two
sub-protocols; The Inter Authentication Service Protocol(XASP) [Zrelli22] and the Inter Tiket Granting Servive
Protocol (XTGSP) [Zrelli22] . Either of the protocols has its own use that will be explained in the following
sections. Briefly, The XTGSP protocol can be used In remote access scenarios to allow the local KDC to deliver
credentials for services located in remote realms. On the other hand, the XASP protocol can be used in case of
cross-realm roaming scenarios to allow the visited KDC to deliver credentials for roaming users.

7.1.1 XASP

Acquiring TGT in visited realm:

XASP is designed by S Zrelli et al. As an extension of the Kerberos protocol, which enables two Kerberos
KDCs to collaborate in order to authenticate a roaming user and to deliver a TGT that can be used in the
visited realm to obtain service tickets for accessing application services.
Based on the assumption that the home KDC and the KDC of the visited realm both support the XASP
extension, the client acts as if the visited KDC is capable of delivering a TGT, even though he/she is
aware that he/she is not registered as principal in the visited realm. When the visited KDC supports the
XASP extention, it is capable of processing AS-REQ (Authentication Server Request Message) requests
from users belonging to any realm. The processing of these requests is specified by the XASP extension.
The roaming client starts with contacting the KDC of the visited realm by issuing an AS-REQ message
requesting a TGT for use in the visited realm. The AS-REQ message contains information of the user and
her home realm. The KDC of the visited realm locates the KDC of the roaming user and issues an
XASP-REQ message. The XASP-REQ message is built upon the users's AS-REQ message; in addition, a
signature that verifies the identity of the visited KDC is added. The home KDC, which received the
XASP-REQ message, firstly authenticates the message by verfying the signature. Then the home KDC
creates a TGS session key that it will encrpy using the user's secret key. A copy of the same TGS session
key is encrpyted using the public key of the visited KDC. The home KDC sends these two encrypted
components to the visited KDC in an XASP-REP message. The XASP-REP message means a signature
that authenticates the home KDC to the visited KDC. When the visited KDC receives the XASP-REP
message, it validates it by verifying the attached signature. If the authentication phase succeeds, the
visited KDC decrpyts the TGS session key using its own private key. The TGS session key is used to build
a TGT for the roaming users. The TGT and the TGS session key encrypted using the user's secret key are
sent to the user in an AS-REP message.
As soon as the user receives the AS-REP message, he/she can decpyt the TGS session key and use the
TGT to request service tickets from the visited KDC through TGS exchanges.
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7.1.2 XTGSP

Acquiring tickets for remote services:

XTGSP [Zrelli22] allows users to retrieve ST from a KDC although the service is not registered in that
KDC. The typical use of XTGSP is in remote access scenarios where a user has a TGT for a local KDC
and wants to access services deployed in a remote realm. The advantage of using XTGSP protocol lies in
that the client does not need to have a cross-realm TGT for the target realm deploying the service.
Furthermore, the client does not need to contact the remote KDC since the local KDC will deliver the
service ticket that can be used directly to authenticate with the remote service. In fact, from the client's
point of view, the local KDC delivers the service ticket as if the remote service was registered in the local
realm. The cross-realm operations are managed by the local KDC and made transparent to the client. As a
result of the XTGSP exchange, the local KDC acquires enough materials to be able to deliver the
requested service ticket to the client.
Based on the XTGSP protocol, for delivering a service ticket to a client. After obtaining a TGT for the
local realm:

Firstly, the client issues a TGS-REQ message asking for credentials (Ticket and the associated
session key) to access a certain remote service.

1.

After validating the request, the local KDC locates the remote realm and the associated remote
KDC.

2.

Then, it issues an XTGSP-REQ message. The XTGSP-REQ is generated upon the user's TGS-REQ
message, and additionally, includes a signed payload that authenticates the local KDC to the remote
KDC.

3.

The remote KDC authenticates the XTGSP-REQ message by verifying the public-key signature,
then issues a ticket and an associated session key. The session key is encrypted using the public key
of the local KDC.

4.

The encrypted session key and the Ticket are then sent to the local KDC in an XTGSP-REP
message. The XTGSP-REP message is signed using the public key of the remote KDC.

5.

When the local KDC receives the XTGSP-REP message, it authenticates the message by verifying
the signature. It then decrypts the session key.

6.

Finally, the local KDC encrypts the session key using the TGS session key shared with the client
and send the result along with the Ticket to the client in a TGS-REP message. Once the client has
received the TGS-REP message, she can authenticate with the remote service through an AP
exchange.

7.

8 Summary

In summary, I reviewed and analyzed the structure of Kerberos recently proposed and the cross-realm
authentication model of Kerberos as well as an extension version of Kerberos, PKINIT, modifies the basic
protocol to allow public-key authentication. As discussed, even though Kerberos has been proven its strengths
so far, we could spot several security weakness on Kerberos V and PKINIT. Overall, we look at the recent
discovery of attacks against Kerveros V and PKINIT. Regarding attacks on Kerveros V, we discuss about
Hijacking a Network Connection on a Switched Network, password attack and reply attack. Particularly for
PKINIT, we concentrate on man-in-middle attack and currently, the solution adopted in PKINIT-27 and current
candidates for H include hmac-sha1-96-aes128. Lastly, based on the recent published papers, I introduce
several feasible solution to prevnet other possible attacks and way to protect your envionment.
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AS Authentication Server
CS Client-Server
CSE Computer Science and Engineering
EAP Extensible Authentication Protocol
IETF Internet Engineering Task Force
KAS Kerberos Authentication Server
KDC Key Distribution Center
LDAPv3 Lightweight Directory Access Protocol
MIT Massachusetts Institute of Technology
NTLMv2 NT LAN Manager Version 2
PKI Public Key Infrastructure
PKINIT Public Key Cryptography for Initial Authentication in Kerberos,
RADIUS Remote Authentication Dial In User Service
RFC Request For Comments
SMB Server Message Block
ST Service Ticket
TGT Ticket granting ticket
TGS Ticket granting Server
XASP Inter Authentication Service Protocol
XKDCP Extensible Key Distribution Center Protocol
XTGST Inter Ticket Granting Service Protocol
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