Data Center Network Topologies

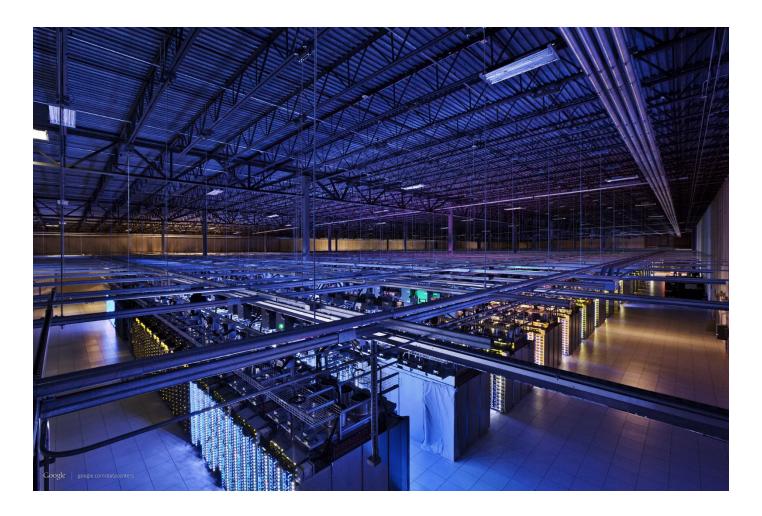
Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

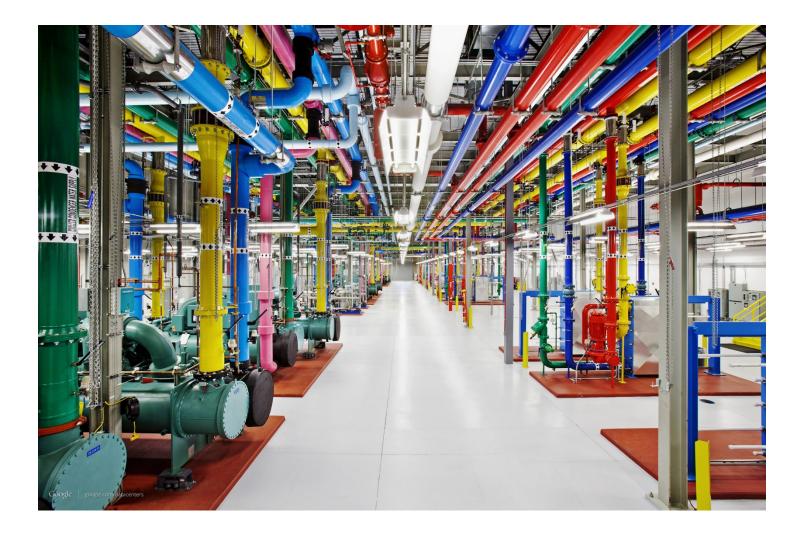
http://www.cse.wustl.edu/~jain/cse570-21/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

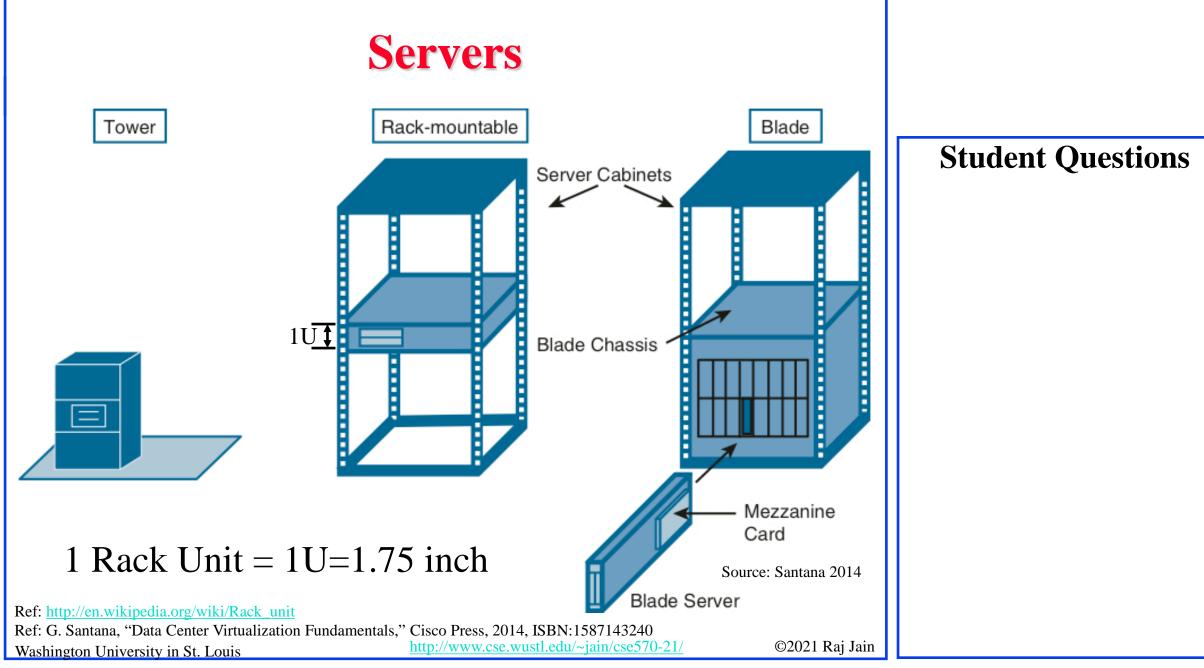

©2021 Raj Jain

- 1. Data Center Physical Layout
- 2. Data Center Network Cabling
- 3. ToR vs. EoR
- 4. Clos and Fat-Tree topologies



Google's Data Center

Source: http://webodysseum.com/technologyscience/visit-the-googles-data-centers/Washington University in St. Louishttp://www.cse.wustl.edu/~jain/cse570-21/©2021 Raj Jain


Cooling Plant

 Source: http://webodysseum.com/technologyscience/visit-the-googles-data-centers/

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

3-5

Modular Data Centers

- □ Small: < 1 MW, 4 racks per unit
- □ Medium: 1-4 MW, 10 racks per unit
- □ Large: > 4 MW, 20 racks per unit
- Built-in cooling, high PUE (power usage effectiveness) ≈1.02 PUE = Power In/Power Used
- **Rapid deployment**

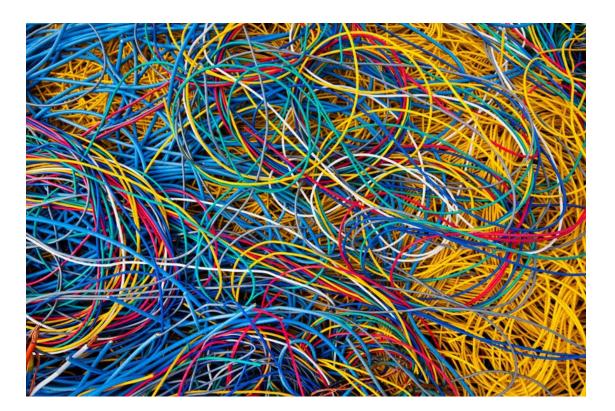
Ref: <u>http://www.sgi.com/products/data_center/ice_cube_air/</u>

http://www.cse.wustl.edu/~jain/cse570-21/

Containerized Data Center

- Ready to Use. Connect to water and power supply and go.
- ❑ Built in cooling. Easy to scale.
 ⇒ Data Center trailer parks.
- Suitable for disaster recovery, e.g., flood, earthquake
- Offered by Cisco, IBM, SGI, Sun/ORACLE,...

 Ref: http://www.datacenterknowledge.com/archives/2010/05/31/iij-will-offer-commercial-container-facility/


 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Student Questions

3-7

Unstructured Cabling

Student Questions

Source: <u>http://webodysseum.com/technologyscience/visit-the-googles-data-centers/</u>

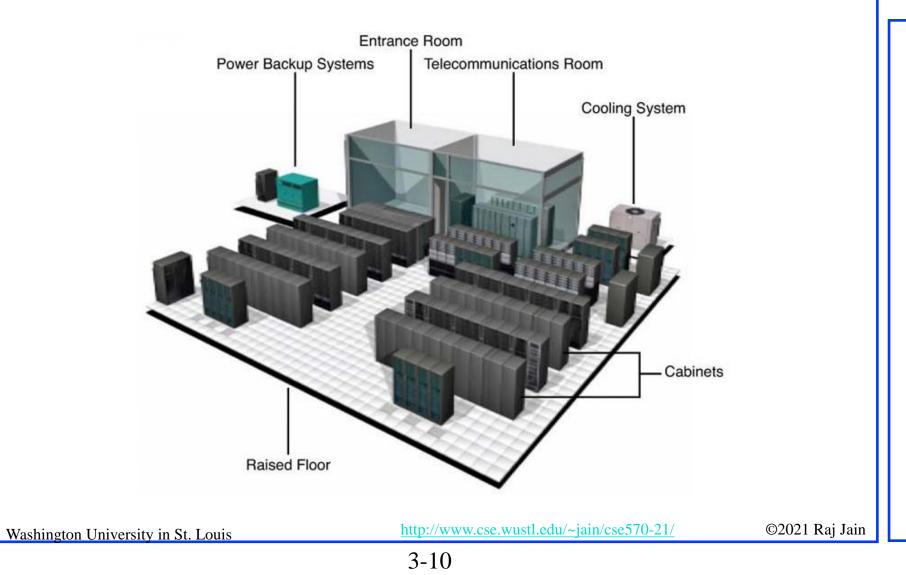
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

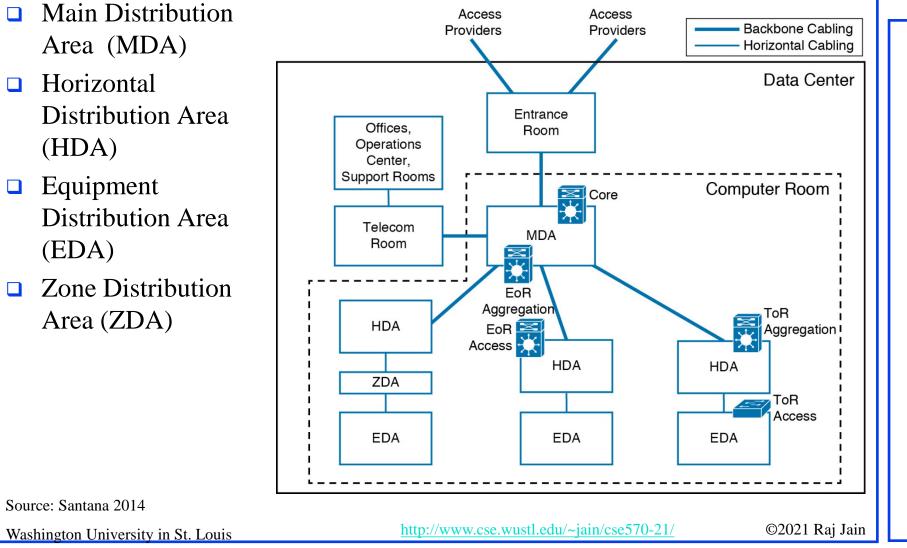
©2021 Raj Jain

3-8

Structured Cabling

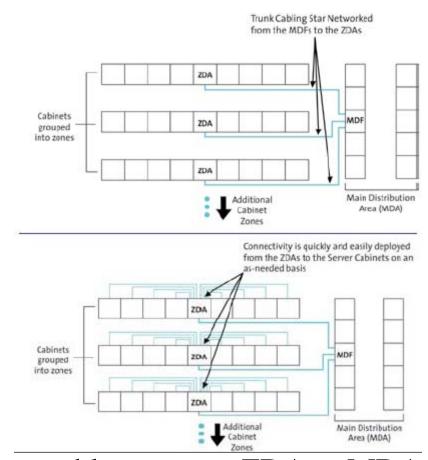

Source: http://webodysseum.com/technologyscience/visit-the-googles-data-centers/

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Data Center Physical Layout


ANSI/TIA-942-2005 Standard

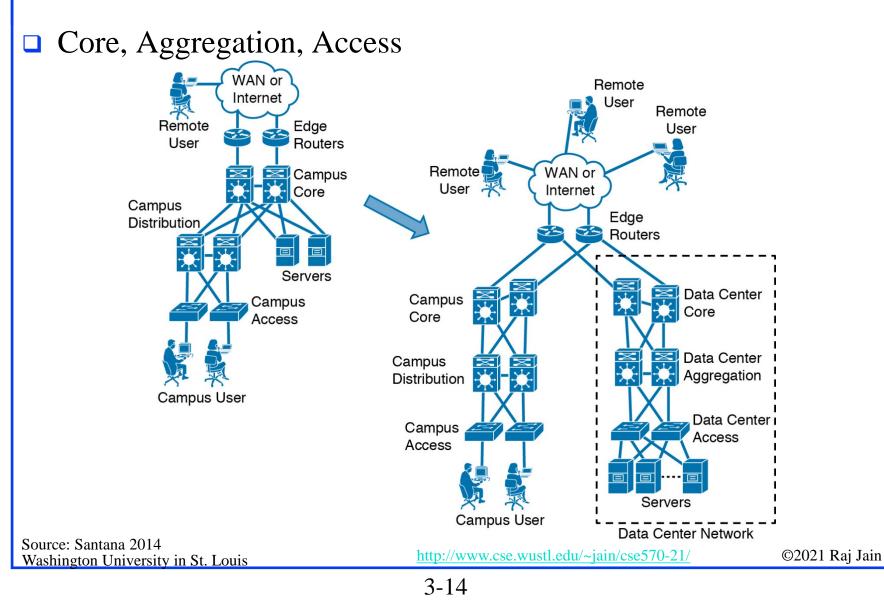
ANSI/TIA-942-2005 Standard

- Computer Room: Main servers
- □ Entrance Room: Data Center to external cabling
- Cross-Connect: Enables termination of cables
- Main Distribution Area (MDA): Main cross connect. Central Point of Structured Cabling. Core network devices
- Horizontal Distribution Area (HDA): Connections to active equipment.
- Equipment Distribution Area (EDA): Active Servers+Switches. Alternate hot and cold aisle.
- Zone Distribution Area (ZDA): Optionally between HDA and EDA.
- Backbone Cabling: Connections between MDA, HDA, and Entrance room Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/cse570-21/</u> ©2021 Raj Jain

Zone Distribution Area

Student Questions

□ High-fiber count cables connect ZDA to MDA or HDA.


Low-fiber count cables connect ZDA to EDA as needed.

Ref: Jennifer Cline, "Zone Distribution in the data center,"

http://www.gravbar.com/documents/zone-distribution-in-the-data-center.pdf http://www.cse.wustl.edu/~jain/cse570-21/

Washington University in St. Louis

Data Center Network Topologies: 3-Tier

3-Tier Data Center Networks

- □ 20-40 servers per rack. Limited by power/cooling
- □ Each server connected to 2 access switches with 1 Gbps (10 Gbps becoming common)
- Access switches connect to 2 aggregation
- All switches below each pair of aggregation switches form a single layer-2 domain
- □ All traffic **north** of aggregation switches forwarded by L3 routing (South = Servers, North = Internet)
 - \Rightarrow Aggregation switches are L3 switches \Rightarrow implement routing
- □ Aggregation switches connect to 2 core L3 switches
- Core L3 switches connect to edge routers
- Core layer forwards data center ingress and egress traffic

Ref: A. Greenberg, "VL2: A Scalable and Flexible Data Center Network," CACM, Vol. 54, NO. 3, March 2011, pp. 95-104, http://research.microsoft.com/pubs/80693/vl2-sigcomm09-final.pdf. http://www.cse.wustl.edu/~jain/cse570-21/

3-15

Washington University in St. Louis

Student Questions

3-Tier Data Center Networks (Cont)

- Aggregation layer is also a place to put middleboxes, such as, firewalls, load balancers
- □ Access Layer provide high number of ports for connectivity.
- Low Latency: In high-frequency trading market, a few microseconds make a big difference.
 - \Rightarrow Cut-through switching and low-latency specifications.
- Each Layer 2 domain typically limited to a few hundred servers to limit broadcast
- □ Most traffic is internal to the data center.
- Most of the flows are small. Mode = 100 MB. DFS uses 100 MB chunks.
- Aggregation layer forwards server-to-server traffic in the data center => Not ideal for East-West Traffic
- Network is the bottleneck. Uplinks utilization of 80% is common.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Switch Locations Top-of-Rack Uplinks to Aggregation Switches Smaller cable between servers and switches Servers Servers Servers Servers Servers Servers Network team has to manage switches on all racks **Raised Floor** Uplinks to Aggregation Switches End-of-Row All network switches in Servers Servers Servers Servers Servers Servers one rack **Raised Floor** Source: Santana 2014 http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain Washington University in St. Louis 3-17

ToR vs EoR

\Box ToR:

- ➤ + Easier cabling
- > If rack is not fully populated \Rightarrow unused ToR ports
- > If rack traffic demand is high, difficult to add more ports
- > Upgrading (1G to 10G) requires complete Rack upgrade

\Box EoR:

- Longer cables
- > + Severs can be placed in any rack
- > + Ports can easily added, upgraded

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

3-Tier Hierarchical Network Design

- All servers require application delivery services for security (VPN, Intrusion detection, firewall), performance (load balancer), networking (DNS, DHCP, NTP, FTP, RADIUS), Database services (SQL)
- ADCs are located between the aggregation and core routers and are shared by all servers
- □ Stateful devices (firewalls) on Aggregation layer
- □ Stateful = State of TCP connection
- □ Stateless, e.g., DNS

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Jetworl

Switches

Server Farm

Server Farm

Aggregation

©2021 Raj Jain

with ACE Module and

ASA Service

witches

Serve

Source: Santana 2014

Student Questions

Catalyst 6500

£

Server Farm

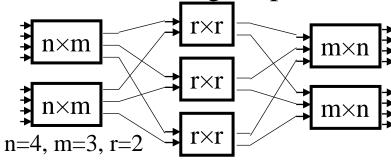
Problem with 3-Tier Topology

- Failure of a single link can reduce the available bandwidth by half
- With more than two aggregation switches, spanning tree becomes unpredictable in case of certain failures.
- □ Two aggregation switch => They are the bottleneck
- It is not possible for VLANs to span across multiple pairs of aggregation switches since the pairs are connected by L3
- VLAN provisioning becomes laborious

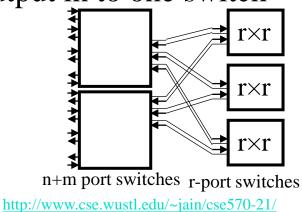
Ref: Dinesh G. Dutt, "Cloud-Native Data Center Networking," O'Reilly Media, Inc., December 2019, ISBN: 9781492045595, Safari Book.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/


©2021 Raj Jain

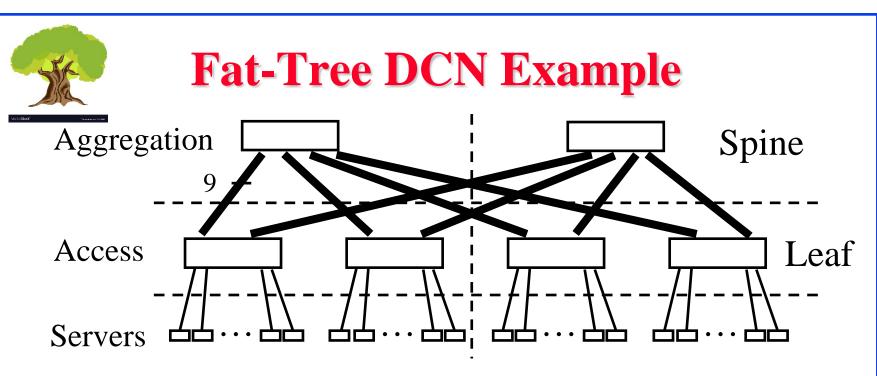
Clos Networks


- Multi-stage circuit switching network proposed by Charles Clos in 1953 for telephone switching systems
- ❑ Allows forming a large switch from smaller switches
 The number of cross-points is reduced ⇒ Lower cost (then)
- □ 3-Stage Clos(n, m, r): ingress (rn×m), middle (mr×r), egress (rm×n)
- □ *Strict-sense non-blocking* if $m \ge 2n-1$. Existing calls unaffected.

3-21

- **\Box** *Rearrangeably non-blocking* if $m \ge n$
- □ Can have any odd number of stages, e.g., 5
- **Folded**: Merge input and output in to one switch

Ref: <u>http://en.wikipedia.org/wiki/Clos_network</u> Washington University in St. Louis


©2021 Raj Jain

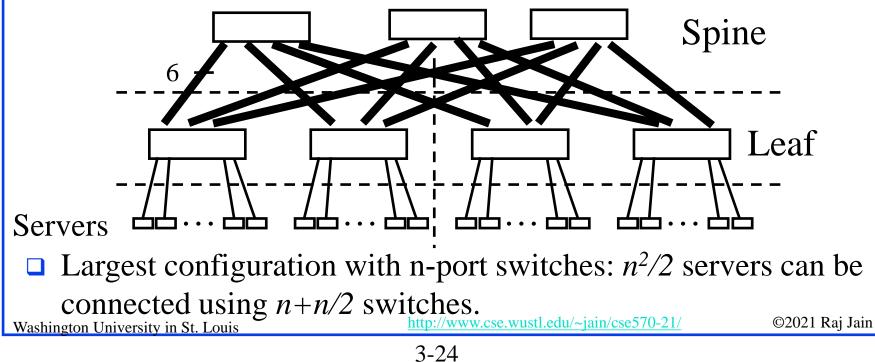
Homework 3A

□ Draw a 3-stage clos(4, 5, 3) topology and its folded version. n = 4, m = 5, r = 3

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

- □ 6 identical 36-port switches. All ports 1 Gbps. 72 Servers.
- Each access switch connects to 18 servers.
 9 Uplinks to first aggregation switch.
 Other 9 links to 2nd aggregation switch.
- □ Throughput between any two servers = 1 Gbps using ECMP Identical bandwidth (36 Gbps) at any bisection.
- Negative: Cabling complexity

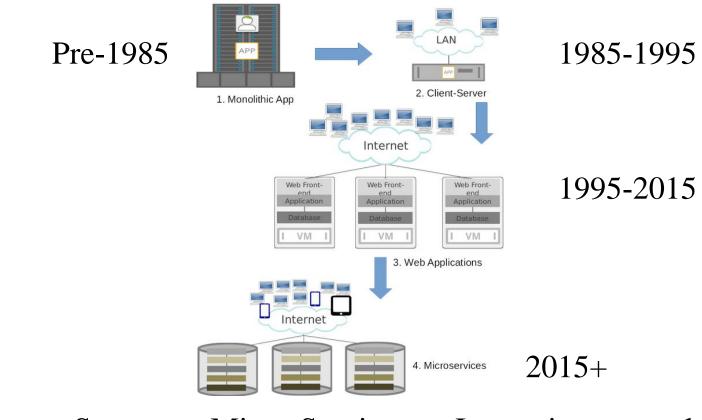

 Ref: Teach yourself Fat-Tree Design in 60 minutes, http://clusterdesign.org/fat-trees/

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse570-21/

Student Questions

Fat-Tree Topology (Cont)

- Half of leaf switch ports are towards servers and the other half towards spine
- With 36 port switches \Rightarrow 18 ports to spine \Rightarrow 2, 3, 6, 9, 18 spine switches
- □ Maximum # of spine switches = $\frac{1}{2}$ # of ports on leaf switches


Homework 3B

- Draw the largest Fat-tree topology using 4-port switches. Assume each server is connected to a single leaf switch while the leaf switches are multi-homed to spine switches. There is no core tier.
- 2. How many servers can be connected in the above configuration?
- 3. How many switches in all are required in the above configuration?
- 4. How many servers can be connected using 64-port switches.
- 5. How many switches are required to form the spine and the leaves using 64-port switches.

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Evolution of Applications

Student Questions

□ Larger Servers to Micro-Services ⇒ Increasing network demand

Ref: Dinesh G. Dutt, "Cloud-Native Data Center Networking," O'Reilly Media, Inc., December 2019, ISBN: 9781492045595, Safari Book.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

North-South vs. East-West Traffic

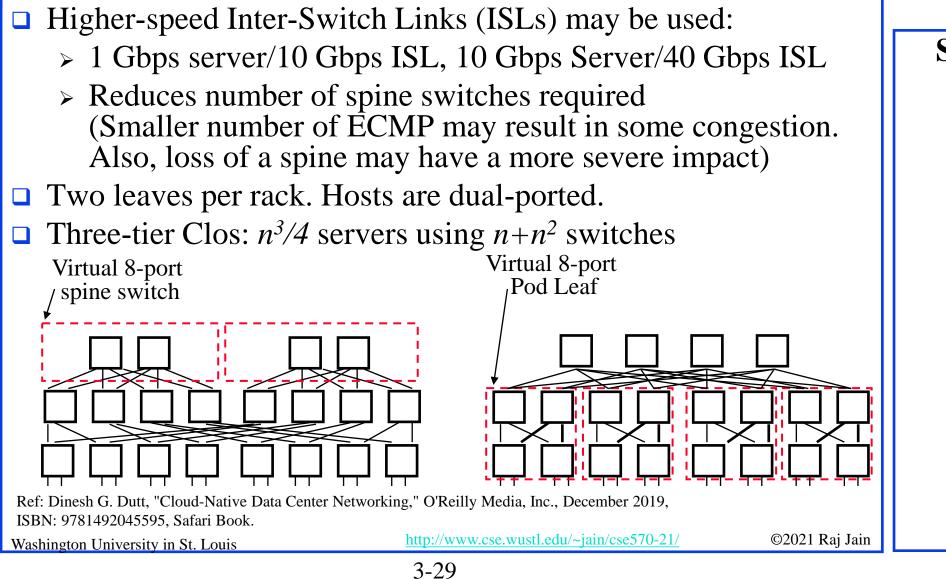
- □ Previously, most of the traffic was north-south
 - \Rightarrow Between servers in the data center and clients out-side
- Now the trend is towards traffic between servers for big data analysis
 - Clients \Rightarrow East-West traffic \Rightarrow Requires flatter network North-South \Rightarrow Fat-tree like topologies Datacenter Switch East-West Server Server

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

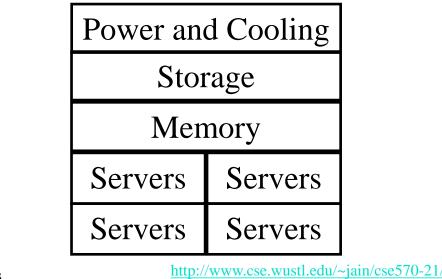
Advantages of 2-Tier Architecture

- Homogeneous Equipment: Spine and leaf switches both have the same number of ports with the same speed.
 Maintenance and replacements is easier
- □ L2 forwarding is used only in each rack.
 ⇒ a new protocol (VXLAN) is used for routing between racks
- ❑ A leaf can reach any other leaf via any spine at the same cost ⇒ Equal cost multi-path (ECMP) simplifies routing
- All packets of a flow are sent using the same path to avoid outof-order arrivals.
 - > Flow = {Source IP, Dest IP, L4 Protocol, Source Port, Dest Port)
 - > Flow hashing is used to select a spine switch


Ref: Dinesh G. Dutt, "Cloud-Native Data Center Networking," O'Reilly Media, Inc., December 2019, ISBN: 9781492045595, Safari Book.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/


©2021 Raj Jain

Variations

Rack-Scale Architecture

- □ Traditionally each server has its own cooling, storage, memory, and networking ⇒ Inefficient use of dedicated resources
- □ Shared resources \Rightarrow Rack-Scale Architecture (RSA)
- Memory, Storage, Cooling is shared by all servers on the rack Server "sleds" plug in to networking board on the back
- Buy complete racks rather than individual servers
- Being standardized by Open Compute Project (OCP)

Student Questions

©2021 Raj Jain

Washington University in St. Louis

Micro-Servers

- Microserver = a small system on a chip (SOC) containing CPU, memory and multiple NICs
- □ Many microservers on a board (look like memory DIMMs)
- Microserver sleds can replace server sleds in rack scale architecture

- Modular data centers can be used for easy assembly and scaling 1.
- Three tiers: 2.
 - 1. Access, Aggregation, Core
 - 2. Application delivery controllers between Aggregation and core.
 - 3. Need large L2 domains => Past
- Clos-Based Fat-tree topology is being used to improve 3. performance and reliability

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Acronyms

ADC	Application Delivery Controller
ANSI	American National Standards Institute
BPE	Business Process Engineering
CSW	Core Switch
DCBX	Data Center Bridging eXtension
DCN	Data Center Network
DFS	Distributed File System
DHCP	Dynamic Host Control Protocol
DIMM	Dual Inline Memory Module
DNS	Domain Name System
ECMP	Equal Cost Multipath
EDA	Equipment Distribution Area
EoR	End of Row

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Acronyms (Cont)

ETS	Enhanced Transmission Selection	
EVB	Edge Virtual Bridge	
FC	Fibre Channel	
FSW	Fabric switch	
FTP	File Transfer Protocol	
HDA	Horizontal Distribution Area	
LACP	Link Aggregation Control Protocol	
LAG	Link Aggregation	
LLDP	Link Layer Discovery Protocol	
MAC	Media Access Control	
MDA	Main Distribution Area	
MW	Mega-Watt	
NIC	Network Interface Card	
NTP	Network Time Protocol	
NVGRE	Network Virtualization using Generic Routing Enca	psulation
OCP	Open Compute Project	
Washington University in St	. Louis <u>http://www.cse.wustl.edu/~jain/cse570-21/</u>	©2021 Raj Jain
OCP Washington University in St		

Student Questions

Acronyms (Cont)

PFC	Priority Flow Control
PUE	Power Usage Effectiveness
RADIUS	Remote Authentication Dial-In User Service
RPC	Remote Procedure Call
RSA	Rack Scale Architecture
RSW	Rack switch
SOC	System on Chip
SQL	Structured Query Language
SSW	Spine Switches
STP	Spanning Tree Protocol
TIA	Telecommunications Industry Association
ToR	Top of Rack
TRILL	Transparent Interconnection of Lots of Link
VLAN	Virtual Local Area Network
VM	Virtual Machine
VPN	Virtual Private Network
Washington University in S	t. Louis <u>http://www.cse.wustl.edu/~jain/cse570-21/</u>

Student Questions

Acronyms (Cont)

- VRF Virtual Routing and Forwarding
- VXLAN Virtual Extensible Local Area Network
- ZDA Zone Distribution Area

Reading List

- Dinesh G. Dutt, "Cloud-Native Data Center Networking," O'Reilly Media, Inc., ecember 2019, ISBN: 9781492045595, Safari Book (Chapters 2 and 3)
- G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240 (Safari book) (Chapters 1 and 2)

References

- A. Greenberg, "VL2: A Scalable and Flexible Data Center Network," CACM, Vol. 54, NO. 3, March 2011, pp. 95-104, <u>http://research.microsoft.com/pubs/80693/vl2-sigcomm09-final.pdf</u>
- □ <u>http://en.wikipedia.org/wiki/Clos_network</u>
- Teach yourself Fat-Tree Design in 60 minutes, <u>http://clusterdesign.org/fat-trees/</u>
- http://webodysseum.com/technologyscience/visit-the-googles-data-centers/
- <u>http://www.sgi.com/products/data_center/ice_cube_air/</u>
- Datacenter Infrastructure mobile Data Center from Emerson Network Power, <u>http://www.datacenterknowledge.com/archives/2010/05/31/iij-will-offer-commercial-container-facility/</u>
- □ Jennifer Cline, "Zone Distribution in the data center,"

http://www.graybar.com/documents/zone-distribution-in-the-data-center.pdf

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Wikipedia Links

- http://en.wikipedia.org/wiki/Modular_data_center
- □ <u>http://en.wikipedia.org/wiki/Data_center</u>
- http://en.wikipedia.org/wiki/Structured_cabling
- http://en.wikipedia.org/wiki/Cable_management
- http://en.wikipedia.org/wiki/Raised_floor
- http://en.wikipedia.org/wiki/Data_center#environmental_contro
- <u>https://en.wikipedia.org/wiki/Hierarchical_internetworking_mo</u>
- □ <u>http://en.wikipedia.org/wiki/Fat_tree</u>
- <u>http://en.wikipedia.org/wiki/Clos_network</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Scan This to Download These Slides

Student Questions

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Student Questions

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

3-41