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Overview 

1. What is a Quantum and Quantum Bit? 
2. Matrix Algebra Review 
3. Quantum Gates: Not, And, or, Nand 
4. Applications of Quantum Computing 
5. Quantum Hardware and Programming 

http://www.cse.wustl.edu/%7Ejain/
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What is a Quantum? 
 Quantization: Analog to digital conversion 
 Quantum = Smallest discrete unit 
 Wave Theory: Light is a wave. It has a 

frequency, phase, amplitude 
 Quantum Mechanics: Light behaves like 

discrete packets of energy that can be 
absorbed and released  

 Photon = One quantum of light energy 
 Photons can move an electron from one 

energy level to next higher level 
 Photons are released when an electron 

moves from one level to lower energy level 

Quantum 

Electrons 

Photon 

Wave 

http://www.cse.wustl.edu/%7Ejain/
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Probabilistic Behavior 
 Young’s Double-Slit Experiment 1801 

 
 The two waves exiting the slits interfere. 
 Interference is constructive at some spots and destructive at 

others ⇒ Probabilistic 

Photons 

http://www.cse.wustl.edu/%7Ejain/
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Quantum Bits 
1. Computing bit is a binary scalar: 0 or 1 
2. Quantum bit (Qubit) is a 2×1 vector: 
3. Vector elements of Qubits are complex numbers x+iy 
4. Modulus of a complex Number 

 
     Example: 
5. Probability of each element in a qubit vector is proportional to 

its modulus squared 
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Polar Representation 
 Complex numbers in polar coordinates: 
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 Exercise: Find the complex and polar representation of C 

C 
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Qubit Interpretation 

 If a single photon is emitted from the source, the photon 
reaches position A or B with some probability 
⇒ Photon has a superposition (rather than position) 

 Each position has a different path length and, therefore, 
different amplitude and phase 

Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019,  
ISBN:9781492039686, 320 pp. 

[Source: Johnston,  et al.   2019] 

http://www.cse.wustl.edu/%7Ejain/
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Bra-Ket Notation 
 The vector     is denoted in bra-kets |    > 
 Brackets: { }, [ ], < > 
 Bra <a| 
 Ket |a> 
  Example: Ket-zero and ket-one 

 
 
 

 Bra is the transpose of the complex-conjugate of a Ket. 
Example: Bra-zero and Bra-one 

ψ ψ

1 0
 |0     |1

0 1
   

= > = >   
   

[ ] [ ]1 0  <0 |    0 1  <1|= =
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Matrix Multiplication 
 Matrix multiplication ×: 

 
 
 
 
 
 

 Example:  
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Tensor Product 
 Tensor Product   : m×n    k×l results in mk×nl matrix 
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 Example 1: 
 
 
 
 
 
 
 

 Example 2:  

Tensor Product (Cont) 
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Multiple Qubits and QuBytes 

 In a k-qubit register, each of the 2k positions can be any 
complex number 

 QuByte=8-Qubits = 256-element vector 
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Homework 19A 
 Given two matrices: 

 
 
 
 

 Compute: 
 

 Compute the probabilities of each element of 

1 1 1
1 0
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Quantum Gates 
1. Quantum NOT Gate 
2. Quantum AND Gate 
3. Quantum OR Gate 
4. Quantum NAND Gate 
5. Quantum √NOT Gate 

 

http://www.cse.wustl.edu/%7Ejain/
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Quantum NOT Gate 
 NOT:  

0 1
1 0

0 1 0 1 0 1 1 ?
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 Exercise: Fill in the ?’s  
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Quantum AND Gate 
 AND:  

1 1 1 0
AND

0 0 0 1
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1 1 1 0 0 1 0 0 1 1 1 ?
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Quantum OR Gate 
 OR:  

1 0 0 0
0 1 1 1
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1 0 0 0 0 1 0 0 1 0 0 0

                 =             
0 1 1 1 0 0 1 0 0 1 1 1

0 0 0 1
OR                | 00 | 01 |10 |11  =    |

OR  
=  

 
       
                       ×                         
       
       

> > > > 0>     |1>      |1>      |1>

http://www.cse.wustl.edu/%7Ejain/


19-18 
©2019 Raj Jain Washington University in St. Louis http://www.cse.wustl.edu/~jain/   

Quantum NAND Gate 
 NAND:  

0 0 0 1
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Quantum √NOT Gate 
 √NOT: √NOT ×√NOT = NOT  
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Controlled NOT Gate 
 CNOT: If the control bit is 0, no change to the 2nd bit 

If control bit is 1, the 2nd bit is complemented 
1 0 0 0
0 1 0 0

CNOT
0 0 0 1
0 0 1 0

1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0

                 =         
0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1

 
 
 =
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0
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> > > >

•
⊕

 Controlled NOT gate can be used to produce two bits that are  
entangled ⇒ Two bits behave similarly even if far apart 
⇒ Can be used for teleportation of information 
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Quantum Gates: Summary 

 The first 4 gates above are similar to the classical gates.  
The last two are non-classical gate.  

 There are many other classical/non-classical quantum gates, 
e.g., Rotate, Copy, Read, Write, … 

 Using such gates one can design quantum circuits 

0 1 1 1 1 0
NOT= AND=

1 0 0 0 0 1

1 0 0 0 0 0 0 1
OR= NAND=

0 1 1 1 1 1 1 0

1 0 0 0
1 1 0 1 0 01NOT= CNOT=
1 1 0 0 0 12

0 0 1 0

   
   
   

   
   
   

 
 −       
 
 

Classical 

Non-Classical 
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Quantum Applications 
 It has been shown that quantum computation makes several 

problems easy that are hard currently. Including: 
 Fourier Transforms  
 Factoring large numbers 
 Error correction 
 Searching a large unordered list 

 There are some new methods: 
 Quantum Key Exchange 
 Quantum Teleportation (transfer states from one location to 

another) 

Quantum-Safe Cryptography is being standardized 

http://www.cse.wustl.edu/%7Ejain/
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Fourier Transforms 
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Quantum Fourier Transform (QFT) 
 Fourier transform is used to find periodic components of 

signals 
 Conventional computing requires O(n2n) gates,  

n = # of bits in the input register = Size of input numbers 
⇒ Exponential in n 

 Quantum computing allows Fourier transforms using O(m2) 
quantum gates, m = # of qubits in the q-registers 
⇒ Polynomial in m 

 QFT is faster than classical FT for large inputs 

http://www.cse.wustl.edu/%7Ejain/
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GCD 
 Greatest Common Divisor of any two numbers  

 Divide the larger number with the smaller number and get 
the remainder less than the divisor 

 Divide the previous divisor with the remainder 
 Continue this until the remainder is zero. 

The last divisor is the GCD 

15) 35 (2
30
05) 15 (3

15
0gcd 

http://www.cse.wustl.edu/%7Ejain/
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Shor’s Factoring Algorithm 
 Peter Shor used QFT and showed that Quantum Computers can 

find prime factors of large numbers exponentially faster than 
conventional computers 

 Step 1: Find the period of ai mod N sequence.  
Here a is co-prime to N ⇒ a is a prime such that gcd(a, N) = 1 
⇒ a and N have no common factors. 
 Example: N=15, a=2;  

2i mod 15 for i=0, 1, 2, …  
= 1, 2, 4, 8, 1, … ⇒ p=4 

 This is the classical method for finding period.  
QFT makes it fast. 

 Step 2: Prime factors of N might be gcd(N, ap/2+1) and gcd(N, 
ap/2-1)  
 Example: gcd(15, 22-1) = 3; gcd(15, 22+1) = 5;  

http://www.cse.wustl.edu/%7Ejain/
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Homework 19B 
 Find factors of 35 using Shor’s algorithm. Show all steps. 
 Optional: Try factoring 407 (Answer: 11×37) 

http://www.cse.wustl.edu/%7Ejain/
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Quantum Machine Learning (QML) 
 Quantum for solving systems of linear equation 
 Quantum Principal Component Analysis 
 Quantum Support Vector Machines (QSVM) 

 Classical SVM has runtime of O(poly(m,n)),  
m data points, n features 

 QSVM has runtime of O(log(mn)) 
 Currently limited to data that can be represented with 

small number of qubits 
 QML can process data directly from Quantum sensors with full 

range of quantum information  
 

Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019,  
ISBN:9781492039686, 320 pp. 

http://www.cse.wustl.edu/%7Ejain/
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Building Quantum Computers 
1. Neural Atom: Group of cesium or rubidium atoms are cooled 

down to a few degree Kelvin and controlled using lasers 
2. Nuclear Magnetic Resonance (NMR) 
3. Nitrogen-Vacancy Center-in-Diamond: Some carbon atoms 

in diamond lattice are replaced by nitrogen atoms 
4. Photonics: Mirrors, beam splitters, and phase shifters are used 

to control photons 
5. Spin Qubits: Using semiconductor materials 
6. Topological Quantum Computing: Uses Anyon which are 

quasi-particles different from photons or electrons 
7. Superconducting Qubits: Requires cooling down to 10mK 

Ref: J. D. Hidary, “Quantum Computing: An Applied Approach,” Springer, 2019, 380 pp. 

http://www.cse.wustl.edu/%7Ejain/
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Quantum Hardware 
 IBM Q Experience: 5-Qubit quantum processor 

Open to public for experiments using their cloud, 
https://www.ibm.com/quantum-computing/technology/experience/   

Ref: https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/  

http://www.cse.wustl.edu/%7Ejain/
https://www.ibm.com/quantum-computing/technology/experience/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
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Quantum Hardware (Cont) 
 Google’s Quantum computer in Santa Barbara Lab 

Ref: https://www.nbcnews.com/mach/science/google-claims-quantum-computing-breakthrough-ibm-pushes-back-ncna1070461  

http://www.cse.wustl.edu/%7Ejain/
https://www.nbcnews.com/mach/science/google-claims-quantum-computing-breakthrough-ibm-pushes-back-ncna1070461
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Quantum Simulators 
 QCEngine: https://oreilly-qc.github.io/ 
 Qiskit, https://qiskit.org/ 

 Qiskit OpenQASM (Quantum Assembly Language), 
https://github.com/QISKit/openqasm/blob/master/examples/gener
ic/adder.qasm  

 Q# (Qsharp), https://docs.microsoft.com/en-
gb/quantum/?view=qsharp-preview 

 Cirq, https://arxiv.org/abs/1812.09167   
 Forest, https://www.rigetti.com/forest 
 List of QC Simulators, https://quantiki.org/wiki/list-qc-simulators 
 See the complete list at: 

https://en.wikipedia.org/wiki/Quantum_programming 
Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019,  
ISBN:9781492039686, 320 pp. 

http://www.cse.wustl.edu/%7Ejain/
https://oreilly-qc.github.io/
https://qiskit.org/
https://github.com/QISKit/openqasm/blob/master/examples/generic/adder.qasm
https://github.com/QISKit/openqasm/blob/master/examples/generic/adder.qasm
https://docs.microsoft.com/en-gb/quantum/?view=qsharp-preview
https://docs.microsoft.com/en-gb/quantum/?view=qsharp-preview
https://arxiv.org/abs/1812.09167
https://www.rigetti.com/forest
https://quantiki.org/wiki/list-qc-simulators
https://en.wikipedia.org/wiki/Quantum_programming
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Quantum Supremacy 
 Quantum Supremacy: Solve a problem on quantum computer 

that can not be solved on a classical computer 
 Google announced it has achieved Quantum Supremacy on 

October 23, 2019 
 Google built a 54-qubit quantum computer using 

programmable superconducting processor 
 Vendors: IBM, Microsoft, Google, Alibaba Cloud, D-Wave 

Systems, 1QBit, QC Ware, QinetiQ, Rigetti Computing, Zapata 
Computing 

 Global Competition: China, Japan, USA, EU are also 
competing 

Ref: F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting processor,” 
Nature 574, 505–510 (Oct. 23, 2019), https://www.nature.com/articles/s41586-019-1666-5  

http://www.cse.wustl.edu/%7Ejain/
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
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Summary 

1. Qubits are two element vectors. Each element is a complex 
number that indicate the probability of that level 

2. Multi-qubits are represented by tensor products of single-
qubits 

3. Qbit operations are mostly matrix operations. The number of 
possible operations is much larger than the classic computing. 

4. Shor’s factorization algorithm is an example of algorithms that 
can be done in significantly less time than in classic computing 

5. Quantum computing is here. IBM, Microsoft, Google all offer 
platforms that can be used to write simple quantum computing 
programs and familiarize yourself.  

6. Quantum-Safe Crypto is in standardization 
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