Introduction to Quantum Computing and its Applications to Cyber Security

Classical Bit

Qubit

Raj Jain
Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-19/

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) example of the C2019 Raj Jain

- 1. What is a Quantum and Quantum Bit?
- 2. Matrix Algebra Review
- 3. Quantum Gates: Not, And, or, Nand
- 4. Applications of Quantum Computing
- 5. Quantum Hardware and Programming

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain

What is a Quantum?

- Quantization: Analog to digital conversion.
- \Box Quantum = Smallest discrete unit
- **Wave Theory**: Light is a wave. It has a frequency, phase, amplitude
- **Quantum Mechanics:** Light behaves like discrete packets of energy that can be absorbed and released
- **Photon** = One quantum of light energy
- **Photons can move an electron from one** energy level to next higher level
- **Photons are released when an electron** moves from one level to lower energy level

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain

Quantum Bits

- 1. Computing bit is a binary scalar: 0 or 1
- 2. Quantum bit (Qubit) is a 2×1 vector: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ or $0 | 1$ $\begin{vmatrix} 1 & 0 \end{vmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$ or $\begin{bmatrix} 1 \end{bmatrix}$
- 3. Vector elements of Qubits are **complex numbers** *x+iy*
- 4. **Modulus** of a complex Number $|x+iy| = \sqrt{(x+iy)(x-iy)} = \sqrt{x^2 + y^2}$ Conjugate

Example:
$$
|(1+2i)| = \sqrt{(1+2i)(1-2i)} = \sqrt{1+4} = \sqrt{5}
$$

5. Probability of each element in a qubit vector is proportional to its modulus squared 2 0 0 2 $/(|a|^2 + |a|^2)$ 0 | \mathbf{u}_1 $^{2}/(1a^{2}+a^{2})$ $|a_{0}|^{2}/(|a_{0}|^{2}+|a_{1}|^{2})$ $|a_1|^2/(|a_0|^2+|a_1|^2)$ \int_{0}^{2} /(|a₀ |² + |a₁ | \int_{0}^{2} /(|a₀|² + |a₁| a_0 | $P = |a_0|^2 / (|a_0|^2 + |a_0|^2)$ a_1 | $P=|a_1|^2/(|a_0|^2+|a_1|^2)$ $|a_0|$ $P = |a_0|^2 / (|a_0|^2 +$ $|\frac{c_0}{a}| \Rightarrow$ $\left[a_{1} \right]$ $P = |a_{1}|^{2} / (|a_{0}|^{2} +$

$$
\begin{bmatrix} 1+2i \\ 1-i \end{bmatrix} \Rightarrow \begin{vmatrix} 1+2i \\ 1-i \end{vmatrix} = \frac{\sqrt{(1+2i)(1-2i)}}{|1-i|} = \frac{\sqrt{5}}{\sqrt{(1-i)(1+i)}} = \frac{\sqrt{5}}{\sqrt{2}} \Rightarrow P = \begin{cases} 5/(5+2) & = 5/7 \\ 2/(5+2) & = 2/7 \end{cases}
$$

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain ©2019 Raj Jain

Polar Representation

Complex numbers in polar coordinates:

 $(-1+i)$

1

-1

 \overline{C}

$$
(x+iy) = re^{i\theta} = r\left(\cos(\theta) + i\sin(\theta)\right)
$$
\n
$$
r = \sqrt{x^2 + y^2}
$$
\n
$$
\theta = \tan^{-1}(y/x)
$$
\n
$$
\text{Imaginary}
$$
\n
$$
2\pi = 360^\circ
$$
\n
$$
\pi/4 = 45^\circ
$$
\n
$$
\text{Real}
$$
\n
$$
1 + i \left[\frac{\sqrt{2}e^{i\pi/4}}{\pi/4}\right] \left[\sqrt{2}\left(\cos(\pi/4) + i\sin(\pi/4)\right)\right]
$$

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) enterprise on the C2019 Raj Jain $1+i$ $\sqrt{2}e^{3\pi/4}$ $\sqrt{2}(\cos(3\pi/4)+i\sin(3\pi/4))$ $\begin{bmatrix} 1+i \\ -1+i \end{bmatrix} = \begin{bmatrix} \sqrt{2}e^{3\pi/4} \\ \sqrt{2}e^{3\pi/4} \end{bmatrix} = \begin{bmatrix} \sqrt{2}(\cos(3\pi/4) + i\sin(3\pi/4))] \\ \sqrt{2}(\cos(3\pi/4) + i\sin(3\pi/4))] \end{bmatrix}$ **Exercise:** Find the complex and polar representation of C

¹⁹⁻⁶

Qubit Interpretation

- \Box If a single photon is emitted from the source, the photon reaches position A or B with some probability ⇒ Photon has a *superposition* (rather than position)
- \Box Each position has a different path length and, therefore, different amplitude and phase

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) example of the C2019 Raj Jain Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019, ISBN:9781492039686, 320 pp.

Bra-Ket Notation

- **The vector** ψ **is denoted in bra-kets** $|\psi\rangle$
- **Q** Brackets: $\{\,\},\,[\,\,\]$, <>
- \Box Bra $\leq a$
- \Box Ket $|a\rangle$
- **□** Example: Ket-zero and ket-one 1 0 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = |0 > \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0 > \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1 >$
- **□** Bra is the transpose of the complex-conjugate of a Ket. Example: Bra-zero and Bra-one

$$
\begin{bmatrix} 1 & 0 \end{bmatrix} = \langle 0 | \begin{bmatrix} 0 & 1 \end{bmatrix} = \langle 1 |
$$

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain

Matrix Multiplication

Matrix multiplication ×:

$$
\begin{bmatrix}\na_{00} & a_{01} & a_{02} \\
a_{10} & a_{11} & a_{12}\n\end{bmatrix}\n\times\n\begin{bmatrix}\nb_{01} & b_{01} \\
b_{10} & b_{11} \\
b_{20} & b_{21}\n\end{bmatrix}
$$
\n=\n
$$
\begin{bmatrix}\na_{00}b_{00} + a_{01}b_{10} + a_{02}b_{20} & a_{00}b_{01} + a_{01}b_{11} + a_{02}b_{21} \\
a_{10}b_{00} + a_{11}b_{10} + a_{12}b_{20} & a_{10}b_{01} + a_{11}b_{11} + a_{12}b_{21}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0 & 1 \\
1 & 1 \\
0 & 0\n\end{bmatrix}\n\times\n\begin{bmatrix}\n1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0\n\end{bmatrix}\n=\n\begin{bmatrix}\n1 & 1 & 1 \\
2 & 1 & 2 \\
0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
3 \times 2
$$
\n
$$
2 \times 3
$$
\n
$$
3 \times 3
$$
\n
$$
\begin{bmatrix}\n\text{Wshington University in St. Louis} \\
\text{19-9}\n\end{bmatrix}
$$

©2019 Raj Jain

Tensor Product

□ Tensor Product ⊗: $m \times n$ ⊗ $k \times l$ results in $mk \times nl$ matrix

$$
A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} B = \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix}
$$

\n
$$
A \otimes B = \begin{bmatrix} a_{00} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} & a_{01} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} \end{bmatrix}
$$

\n
$$
A \otimes B = \begin{bmatrix} a_{00} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} & a_{11} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} a_{00}b_{00} & a_{00}b_{01} & a_{00}b_{02} & a_{01}b_{00} & a_{01}b_{01} & a_{01}b_{12} \\ a_{00}b_{10} & a_{00}b_{11} & a_{00}b_{22} & a_{01}b_{20} & a_{01}b_{11} & a_{01}b_{22} \\ a_{10}b_{10} & a_{10}b_{11} & a_{10}b_{22} & a_{11}b_{10} & a_{11}b_{11} & a_{11}b_{22} \\ a_{10}b_{20} & a_{10}b_{21} & a_{10}b_{22} & a_{11}b_{20} & a_{11}b_{21} & a_{11}b_{22} \\ a_{10}b_{20} & a_{10
$$

Tensor Product (Cont)

Example 2: $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ \otimes $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ = $\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ \otimes $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ = $\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ **2×2 1×3 2×6**

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain ©2019 Raj Jain

Multiple Qubits and QuBytes

 In a k-qubit register, each of the 2k positions can be any complex number 1 0 One Qbit: | 0 |1 0 1 10 00 110 1 0 0 Two Qbits: |00 |0 0 = |01 |10 |11 000 0 1 0 00 01 1 0 0 0 Three Qbits: 0 0 0 0 | >= >= >= > > ⊗ = >= >= >= ⊗ 0 00 0 0 1 00 0 0 0 10 0 0 0 01 0 0 0 00 1 0 0 00 0 1 0 00 0 0 0 00 0 0 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 >> >>>>>> Tensor Product

 \Box QuByte=8-Qubits = 256-element vector

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) example of the C2019 Raj Jain

Homework 19A

Given two matrices:

$$
A = \begin{bmatrix} 1+i & 1 \\ 1-i & i \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

- □ Compute: $A \times B$, $A \otimes B$
- \Box Compute the probabilities of each element of $A \times B$

Quantum Gates

- 1. Quantum NOT Gate
- 2. Quantum AND Gate
- 3. Quantum OR Gate
- 4. Quantum NAND Gate
- 5. Quantum √NOT Gate

Quantum √NOT Gate

 $|0>$

Controlled NOT Gate

•

□ CNOT: If the control bit is 0, no change to the 2nd bit If control bit is 1 , the $2nd$ bit is complemented

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain 1000 0100 CNOT 0001 0010 $1 \t0 \t0 \t0 \t1 \t0 \t0 \t0 \t1 \t0 \t1 \t0 \t0$ $0 \quad 1 \quad 0 \quad 0 \mid 0 \mid 1 \mid 0 \mid 0 \mid 0 \mid 1 \mid 0$ $\begin{array}{c|c|c|c|c|c|c} \hline \cdot & \cdot & \cdot \\ \hline \cdot & \cdot & \cdot \\ \hline \end{array}$ $0 \t0 \t0 \t1 \t0 \t1 \t0 \t1 \t0 \t0 \t0 \t0 \t0 \t0$ $0 \t0 \t1 \t0 \t0 \t0 \t1 \t0 \t1 \t0 \t1 \t0 \t1$ $\begin{vmatrix} 1 & 0 & 0 & 0 \end{vmatrix}$ $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$ $=\left|\begin{array}{cc} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right|$ $\begin{array}{|ccc|} 0 & 0 & 0 & 1 \end{array}$ $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ \times $\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$ $\boldsymbol{0}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 0 CNOT $|00\rangle |01\rangle |10\rangle |11\rangle = |00\rangle |01\rangle |11\rangle |10\rangle$ $\mid 0 \mid$ $\lfloor \overline{\overline{\ }} \rfloor$ \mid $^{\circ}$ \mid $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ⊕ **□** Controlled NOT gate can be used to produce two bits that are **entangled** \Rightarrow Two bits behave similarly even if far apart \Rightarrow Can be used for teleportation of information

- \Box The first 4 gates above are similar to the classical gates. The last two are non-classical gate.
- \Box There are many other classical/non-classical quantum gates, e.g., Rotate, Copy, Read, Write, …
- Using such gates one can design **quantum circuits**

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain

Quantum Applications

- \Box It has been shown that quantum computation makes several problems easy that are hard currently. Including:
	- **Fourier Transforms**
	- **Factoring large numbers**
	- **Exercise** Error correction
	- Searching a large unordered list
- **There are some new methods:**
	- Quantum Key Exchange
	- Quantum Teleportation (transfer states from one location to another)

Quantum-Safe Cryptography is being standardized

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain

19-22

¹⁹⁻²³

Quantum Fourier Transform (QFT)

- **□** Fourier transform is used to find periodic components of signals
- \Box Conventional computing requires $O(n2^n)$ gates, $n = #$ of bits in the input register = Size of input numbers ⇒ Exponential in *n*
- Quantum computing allows Fourier transforms using O(*m*2) quantum gates, $m = #$ of qubits in the q-registers ⇒ Polynomial in *m*
- QFT is faster than classical FT for large *inputs*

GCD

- **Q** Greatest Common Divisor of any two numbers
	- Divide the larger number with the smaller number and get the remainder less than the divisor
	- Divide the previous divisor with the remainder
	- Continue this until the remainder is zero. The last divisor is the GCD

Shor's Factoring Algorithm

- **□** Peter Shor used QFT and showed that Quantum Computers can find prime factors of large numbers exponentially faster than conventional computers
- **Step 1:** Find the period of *ai* mod N sequence. Here *a* is co-prime to $N \implies a$ is a prime such that $gcd(a, N) = 1$ \Rightarrow *a* and *N* have no common factors.
	- Example: *N*=15, *a*=2; 2*ⁱ* mod 15 for *i*=0, 1, 2, … $= 1, 2, 4, 8, 1, \ldots \Rightarrow p = 4$
	- This is the classical method for finding period. QFT makes it fast.
- **Step 2:** Prime factors of N might be *gcd(N*, *ap/2+1) and gcd(N*, $a^{p/2}-1$

Example: $gcd(15, 2^2-1) = 3$; $gcd(15, 2^2+1) = 5$;

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain

Homework 19B

□ Find factors of 35 using Shor's algorithm. Show all steps. **Optional:** Try factoring 407 (Answer: 11×37)

Quantum Machine Learning (QML)

- Quantum for solving systems of linear equation
- Quantum Principal Component Analysis
- Quantum Support Vector Machines (QSVM)
	- Classical SVM has runtime of O(poly(*m*,*n*)), *m* data points, *n* features
	- QSVM has runtime of O(log(*mn*))
		- Currently limited to data that can be represented with small number of qubits
- □ QML can process data directly from Quantum sensors with full range of quantum information

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) example of the C2019 Raj Jain Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019, ISBN:9781492039686, 320 pp.

Building Quantum Computers

- **1. Neural Atom**: Group of cesium or rubidium atoms are cooled down to a few degree Kelvin and controlled using lasers
- **2. Nuclear Magnetic Resonance** (NMR)
- **3. Nitrogen-Vacancy Center-in-Diamond**: Some carbon atoms in diamond lattice are replaced by nitrogen atoms
- **4. Photonics**: Mirrors, beam splitters, and phase shifters are used to control photons
- **5. Spin Qubits**: Using semiconductor materials
- **6. Topological Quantum Computing**: Uses Anyon which are quasi-particles different from photons or electrons
- **7. Superconducting Qubits**: Requires cooling down to 10mK

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) example of the C2019 Raj Jain Ref: J. D. Hidary, "Quantum Computing: An Applied Approach," Springer, 2019, 380 pp.

19-29

Quantum Hardware

□ IBM Q Experience: 5-Qubit quantum processor Open to public for experiments using their cloud,

<https://www.ibm.com/quantum-computing/technology/experience/>

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain Ref:<https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/>

19-30

Quantum Hardware (Cont)

Google's Quantum computer in Santa Barbara Lab

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain ©2019 Raj Jain Ref:<https://www.nbcnews.com/mach/science/google-claims-quantum-computing-breakthrough-ibm-pushes-back-ncna1070461>

19-31

Quantum Simulators

- QCEngine: <https://oreilly-qc.github.io/>
- Qiskit,<https://qiskit.org/>
	- Qiskit OpenQASM (Quantum Assembly Language), [https://github.com/QISKit/openqasm/blob/master/examples/gener](https://github.com/QISKit/openqasm/blob/master/examples/generic/adder.qasm) [ic/adder.qasm](https://github.com/QISKit/openqasm/blob/master/examples/generic/adder.qasm)
- Q# (Qsharp), [https://docs.microsoft.com/en](https://docs.microsoft.com/en-gb/quantum/?view=qsharp-preview)[gb/quantum/?view=qsharp-preview](https://docs.microsoft.com/en-gb/quantum/?view=qsharp-preview)
- Cirq, https://arxiv.org/abs/1812.09167
- Forest,<https://www.rigetti.com/forest>
- List of QC Simulators,<https://quantiki.org/wiki/list-qc-simulators>
- \Box See the complete list at:

https://en.wikipedia.org/wiki/Quantum_programming

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019, ISBN:9781492039686, 320 pp.

19-32

Quantum Supremacy

- Quantum Supremacy: Solve a problem on quantum computer that can not be solved on a classical computer
- **□** Google announced it has achieved Quantum Supremacy on October 23, 2019
	- Google built a 54-qubit quantum computer using programmable superconducting processor
- Vendors: IBM, Microsoft, Google, Alibaba Cloud, D-Wave Systems, 1QBit, QC Ware, QinetiQ, Rigetti Computing, Zapata Computing
- Global Competition: China, Japan, USA, EU are also competing

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain Ref: F. Arute, K. Arya, R. Babbush, *et al.*, "Quantum supremacy using a programmable superconducting processor," *Nature* **574,** 505–510 (Oct. 23, 2019), <https://www.nature.com/articles/s41586-019-1666-5>

19-33

Summary

- 1. Qubits are two element vectors. Each element is a complex number that indicate the probability of that level
- 2. Multi-qubits are represented by tensor products of singlequbits
- 3. Qbit operations are mostly matrix operations. The number of possible operations is much larger than the classic computing.
- 4. Shor's factorization algorithm is an example of algorithms that can be done in significantly less time than in classic computing
- 5. Quantum computing is here. IBM, Microsoft, Google all offer platforms that can be used to write simple quantum computing programs and familiarize yourself.
- 6. Quantum-Safe Crypto is in standardization

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain

Reading List

- J. D. Hidary, "Quantum Computing: An Applied Approach," Springer, 2019, 380 pp.
- Mercedes Gimeno-Segovia, Nic Harrigan, Eric R. Johnston, "Programming Quantum Computers," O'Reilly Media, Inc., July 2019, ISBN:9781492039686 (Safari Book). **Recommended.**
- N. S. Yanofsky and M. A. Mannucci, "Quantum Computing for Computer Scientists," Cambridge, 2008, 380 pp.
- N. D. Mermin, "Quantum Computer Science: An Introduction," Cambridge, 2007, 220 pp.

References

- □ Gerd Leuchs, Dagmar Bruss, "Quantum Information," 2 Volume Set, 2nd Edition, Wiley-VCH, June 2019, ISBN:9783527413539 (Safari Book).
- □ Vladimir Silva, "Practical Quantum Computing for Developers: Programming Quantum Rigs in the Cloud using Python, Quantum Assembly Language and IBM QExperience," Apress, December 2018, ISBN:9781484242186 (Safari Book).
- □ Mingsheng Ying, "Foundations of Quantum Programming," Morgan Kaufmann, March 2016, ISBN:9780128025468 (Safari Book).
- □ F.J. Duarte, "Quantum Optics for Engineers," CRC Press, November 2017, ISBN:9781351832618 (Safari Book).
- □ Quantum Algorithm Zoo, (Compiled list of Quantum algorithms), <http://quantumalgorithmzoo.org/>

Wikipedia Links

- <https://en.wikipedia.org/?title=Inner-product&redirect=no>
- □ https://en.wikipedia.org/wiki/Bra%E2%80%93ket notation
- https://en.wikipedia.org/wiki/Complex_number
- □ https://en.wikipedia.org/wiki/Controlled NOT gate
- □ https://en.wikipedia.org/wiki/Dot_product
- □ https://en.wikipedia.org/wiki/Fourier_transform
- □ https://en.wikipedia.org/wiki/Greatest_common_divisor
- □ https://en.wikipedia.org/wiki/List_of_quantum_processors
- □ https://en.wikipedia.org/wiki/Matrix_multiplication
- □ https://en.wikipedia.org/wiki/Polar_coordinate_system
- □ <https://en.wikipedia.org/wiki/Quantum>
- □ https://en.wikipedia.org/wiki/Quantum_algorithm
- □ https://en.wikipedia.org/wiki/Quantum_computing
- □ https://en.wikipedia.org/wiki/Quantum_entanglement
- □ https://en.wikipedia.org/wiki/Quantum_error_correction
- □ https://en.wikipedia.org/wiki/Quantum_Fourier_transform

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain

Wikipedia Links (Cont)

- □ https://en.wikipedia.org/wiki/Quantum_logic_gate
- □ https://en.wikipedia.org/wiki/Quantum_machine_learning
- □ https://en.wikipedia.org/wiki/Quantum_mechanics
- □ https://en.wikipedia.org/wiki/Quantum_simulator
- □ https://en.wikipedia.org/wiki/Quantum_supremacy
- □ https://en.wikipedia.org/wiki/Quantum_technology
- □ https://en.wikipedia.org/wiki/Quantum_teleportation
- <https://en.wikipedia.org/wiki/Qubit>
- □ https://en.wikipedia.org/wiki/Shor%27s_algorithm
- □ https://en.wikipedia.org/wiki/Superconducting quantum computing
- □ https://en.wikipedia.org/wiki/Sycamore processor
- □ https://en.wikipedia.org/wiki/Tensor_product
- □ https://en.wikipedia.org/wiki/Timeline of quantum computing
- □ https://en.wikipedia.org/wiki/Category:Quantum_gates

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain

Classic Papers on Quantum Computing

- R. P. Feynman, "Simulating Physics with Computers," *International journal of theoretical physics* 21.6 (1982): 467-488, <http://www.springerlink.com/index/t2x8115127841630.pdf>
- D. E. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer," *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences* 400.1818 (1985): 97-117, , <https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070>
- D. E. Deutsch, "Quantum Computational Networks," *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences* 425.1868 $(1989), 73-90.$,

<https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1989.0099> (subscribers only)

- P. W. Shor, "Algorithms for Quantum Computation: Discrete Log and Factoring," Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, IEEE, 1994, p. 124
- A. Barenco et al., "Elementary gates for quantum computation," Physical Review A, March 22, 1995, <https://arxiv.org/pdf/quant-ph/9503016>

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) example of the C2019 Raj Jain

Classic Papers (Cont)

- □ L. K. Grover, "A fast quantum mechanical algorithm for database search," Proceedings, STOC 1996, Philadelphia PA, USA, pp. 212-219, <https://arxiv.org/pdf/quant-ph/9605043>
- G. Brassard et al., "Quantum Counting," 1998, [https://arxiv.org/pdf/quant-](https://arxiv.org/pdf/quant-ph/9805082) [ph/9805082](https://arxiv.org/pdf/quant-ph/9805082)
- G. Brassard et al., "Quantum Amplitude Amplification and Estimation," 2000, <https://arxiv.org/pdf/quant-ph/0005055>
- S. Lloyd, "Quantum Algorithm for Solving Linear Systems of Equations," American Physical Society, APS March Meeting 2010, March 15-19,2010

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) C2019 Raj Jain

19-41

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

<https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u>

Video Podcasts of Prof. Raj Jain's Lectures,

<https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw>

Washington University in St. Louis [http://www.cse.wustl.edu/~jain/](http://www.cse.wustl.edu/%7Ejain/) ©2019 Raj Jain