Data Center Ethernet

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-19/

- 1. Residential vs. Data Center Ethernet
- 2. Review of Ethernet Addresses, devices, speeds, algorithms
- 3. Enhancements to Spanning Tree Protocol
- 4. Virtual LANs

Quiz: True or False?

Which of the following statements are generally true? \square Ethernet is a local area network (Local ≤ 2 km) □□ Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods. $\Box\Box$ Ethernet uses CSMA/CD. □□ Ethernet bridges use spanning tree for packet forwarding. \Box Ethernet frames are 1518 bytes. □□ Ethernet does not provide any delay guarantees. □□ Ethernet has no congestion control. □□ Ethernet has strict priorities.

Residential vs. Data Center Ethernet

Residential	□ Data Center
☐ Distance: up to 200m	□ No limit
□ Scale:	
Few MAC addresses	Millions of MAC Addresses
> 4096 VLANs	Millions of VLANs Q-in-Q
Protection: Spanning tree	Rapid spanning tree,
	(Gives 1s, need 50ms)
Path determined by	Traffic engineered path
spanning tree	
Simple service	Service Level Agreement.
	Rate Control.
Priority	Need per-flow/per-class QoS
⇒ Aggregate QoS	
No performance/Error	Need performance/BER
monitoring (OAM)	
Washington University in St. Louis	

IEEE 802 Address Format

t 48-bit:1000 0000 : 0000 0001 : 0100 0011

: 0000 0000 : 1000 0000 : 0000 1100

= 80:01:43:00:80:0C

Organizationally Unique Identifier (OUI)			24 bits assigned by	
Individual/	Universal/		OUI Owner	
Group	Local			
1	1	2.2.	24	

- □ Multicast = "To all bridges on this LAN"
- □ Broadcast = "To all stations" (Note: Local bit is set)

= 1111111....111 = FF:FF:FF:FF:FF

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-19/

IEEE Standards Numbering System

- □ IEEE 802.* and IEEE 802.1* standards (e.g., IEEE 802.1Q-2018) apply to all IEEE 802 technologies:
 - > IEEE 802.3 Ethernet
 - > IEEE 802.11 WiFi

	802 Overview and Architecture					
	802.2 Logical Link Control					
	802.1 Bridging					
	802.1 Management					
	802.10 Security					
	802.3		802.11		802.17	
	Ethernet		WiFi		Resilient	
		•••		• • •	Packet	
					Ring (RPR)	
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/						

©2019 Rai Jain

4-6

IEEE Standards Numbering (Cont)

- IEEE 802.3* standards apply only to Ethernet, e.g., IEEE802.3ba-2010
- Standards with all upper case letters are base standards E.g., IEEE 802.1AB-2009
- □ Standards with lower case are additions/extensions/revisions. Merged with the base standard in its next revision. e.g., IEEE 802.1w-2001 was merged with IEEE 802.1D-2004
- □ Standards used to be numbered, sequentially, e.g., IEEE 802.1a, ..., 802.1z, 802.1aa, 802.1ab, ...
- Recently they started showing base standards in the additions, e.g., IEEE 802.1Qau-2010

Names, IDs, Locators

Name: John Smith

ID: 012-34-5678

Locator:

1234 Main Street Big City, MO 12345 USA

- □ Locator changes as you move, ID and Names remain the same.
- **Examples**:
 - Names: Company names, DNS names (Microsoft.com)
 - > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
 - > Locators: Wired phone numbers, IP addresses

Interconnection Devices

Interconnection Devices (Cont)

- □ Repeater: PHY device that restores data and collision signals
- **Hub**: Multiport repeater + fault detection and recovery
- **Bridge**: Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout the LAN.
- Router: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- Switch: Multiport bridge with parallel paths
- □ These are functions. Packaging varies.

Ethernet Speeds

- IEEE 802.3cu is working on 400G Ethernet standard. Ethernet Alliance is discussing 800G/1.6T standards
- 10Mbps, 100 Mbps, 1 Gbps versions have both CSMA/CD and Full-duplex versions
- No CSMA/CD in 10G and up
- No CSMA/CD in practice now even at home or at 10 Mbps
- □ 1 Gbps in residential, enterprise offices
- □ 10 Gbps in Data centers, moving to 40 Gbps and 100 Gbps
- 100G in some carrier core networks 100G is still more expensive than 10×10G
- Note: only decimal bit rates are used in networking No cheating like binary byte values used in storage 1 Gbps = 10⁹ b/s, Buy 256 GB Disk = 238.4 GB storage

Ref: http://en.wikipedia.org/wiki/100_Gigabit_Ethernet

https://en.wikipedia.org/wiki/Terabit_Ethernet#802.3cu_project

IS-IS Protocol

- □ Intermediate System to Intermediate System (IS-IS) is a protocol to build routing tables. Link-State routing protocol => Each nodes sends its connectivity (link state) information to all nodes in the network
- □ Dijkstra's algorithm is then used by each node to build its routing table.
- □ Similar to OSPF (Open Shortest Path First).
- □ OSPF is designed for IPv4 and then extended for IPv6. IS-IS is general enough to be used with any type of addresses
- □ OSPF is designed to run on the top of IP
 IS-IS is general enough to be used on any transport
 ⇒ Adopted by Ethernet

Ref: http://en.wikipedia.org/wiki/IS-IS

Shortest Path Bridging

- □ IEEE 802.1aq-2012 (later incorporated in 802.1Q-2014)
- □ Allows all links to be used \Rightarrow Better CapEx
- □ IS-IS link state protocol (similar to OSPF) is used to build shortest path trees for each node to every other node within the SPB domain
- Equal-cost multi-path (ECMP) used to distribute load

Ref: http://en.wikipedia.org/wiki/Shortest Path Bridging

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-19/

What is a LAN?

- □ LAN = Single broadcast domain = Subnet
- No routing between members of a LAN
- Routing required between LANs

Virtual LAN

- □ Virtual LAN = Broadcasts and multicast goes only to the nodes in the virtual LAN
- LAN membership defined by the network manager ⇒ Virtual

IEEE 802.1Q-2011 Tag

- Tag Protocol Identifier (TPI)
- □ Priority Code Point (PCP): 3 bits = 8 priorities 0..7 (High)
- □ Canonical Format Indicator (CFI): $0 \Rightarrow$ Standard Ethernet, $1 \Rightarrow$ IBM Token Ring format (non-canonical or non-standard)
- □ CFI now replaced by Drop Eligibility Indicator (DEI)
- □ VLAN Identifier (12 bits \Rightarrow 4095 VLANs)
- Switches forward based on MAC address + VLAN ID Unknown addresses are flooded.

Ref: Canonical vs. MSB Addresses, http://support.lexmark.com/index?page=content&id=HO1299
Ref: Canonical vs. MSB Addresses, http://support.lexmark.com/index.page=content&id=HO1299
Ref: Canonical vs. MSB Addresses, http://support.lexmark.com/index.page=content&id=HO1299
Ref: Canonical vs. MSB Addresses, http://support.lexmark.com/index.page=content&id=HO1299
Ref: Canonical vs. Ref: Canonical vs

Ref: G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/

- 1. Ethernet's use of IDs as addresses makes it very easy to move systems in the data center \Rightarrow Keep traffic on the same Ethernet
- 2. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)
- 3. VLANs allow different non-trusting entities to share an Ethernet network

List of Acronyms

BER Bit Error Rate

CapEx Capital Expenditure

CD Collision Detection

CSMA Carrier Sense Multiple Access with Collision Detection

DA Destination Address

□ DEI Drop Eligibility Indicator

DNS Domain Name System

□ ECMP Equal-cost multi-path

□ GB Giga Byte

□ ID Identifier

□ IP Internet Protocol

□ IEEE Institution of Electrical and Electronics Engineers

□ IS-IS Intermediate System to Intermediate System

□ LAN Local Area Network

http://www.cse.wustl.edu/~jain/cse570-19/

List of Acronyms (Cont)

MAC Media Access Control

□ ID Identifier

□ IP Internet Protocol

□ IEEE Institution of Electrical and Electronics Engineers

□ IS-IS Intermediate System to Intermediate System

□ LAN Local Area Network

MAC Media Access Control

OSPF Open Shortest Path First

OUI Organizationally Unique Identifier

□ PCP Priority Code Point

□ PHY Physical layer

QoS Quality of Service

□ SPB Shortest Path Bridging

□ TPI Tag Protocol Identifier

□ VLAN Virtual Local Area Network

□ VOIP Voice over IP

■ WiFi Wireless Fidelity

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-19/

Reading List

□ G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240 (Safari Book) (Chapter 3 up to Figure 3.6).

Wikipedia Links

- □ http://en.wikipedia.org/wiki/10-gigabit_Ethernet
- □ http://en.wikipedia.org/wiki/100 Gigabit Ethernet
- □ http://en.wikipedia.org/wiki/Data_center
- □ http://en.wikipedia.org/wiki/Data_center_bridging
- □ http://en.wikipedia.org/wiki/Data-link-layer
- □ http://en.wikipedia.org/wiki/Ethernet
- □ http://en.wikipedia.org/wiki/Ethernet frame
- □ http://en.wikipedia.org/wiki/Fast_Ethernet
- □ http://en.wikipedia.org/wiki/Gigabit Ethernet
- □ http://en.wikipedia.org/wiki/IEEE 802.1Q
- □ http://en.wikipedia.org/wiki/IEEE_802.3
- □ <u>http://en.wikipedia.org/wiki/IS-IS</u>

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/Organizationally unique identifier
- □ http://en.wikipedia.org/wiki/Shortest_Path_Bridging
- □ http://en.wikipedia.org/wiki/Virtual_LAN

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-19/

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-19/