
Advantages of Virtualization □ Minimize hardware costs (CapEx) Multiple virtual servers on one physical hardware □ Easily move VMs to other data centers > Provide disaster recovery. Hardware maintenance. > Follow the sun (active users) or follow the moon (cheap power) • Consolidate idle workloads. Usage is bursty and asynchronous. Increase device utilization □ Conserve power Free up unused physical resources □ Easier automation (Lower OpEx) Simplified provisioning/administration of hardware and software Scalability and Flexibility: Multiple operating systems Ref: http://en.wikipedia.org/wiki/Platform virtualization Ref: K. Hess, A. Newman, "Practical Virtualization Solutions: Virtualization from the Trenches," Prentice Hall, 2009, ISBN:0137142978 Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Rai Jain

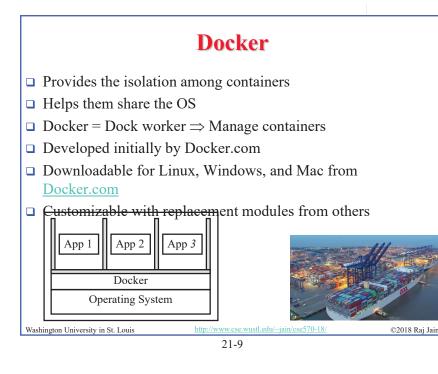
Problems of Virtualization

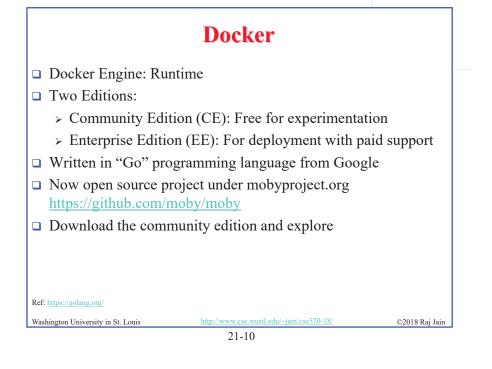
- □ Each VM requires an operating system (OS)
 - > Each OS requires a license \Rightarrow CapEx
 - > Each OS has its own compute and storage overhead
 - > Needs maintenance, updates \Rightarrow OpEx
 - > VM Tax = added CapEx + OpEx

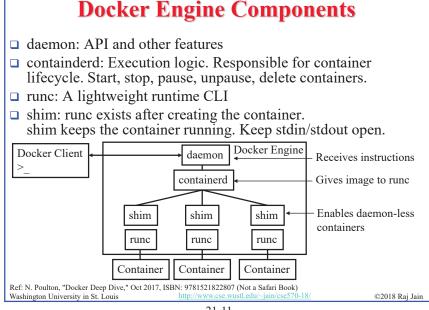
Washington University in St. Louis

Containers (Cont)

Containers have all the good properties of VMs


- > Come complete with all files and data that you need to run
- > Multiple copies can be run on the same machine or different machine ⇒ Scalable
- Same image can run on a personal machine, in a data center or in a cloud
- Operating system resources can be restricted or unrestricted as designed at container build time
- Isolation: For example, "Show Process" (ps on Linux) command in a container will show only the processes in the container
- > Can be stopped. Saved and moved to another machine or for later run


Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse570-18/</u>


VM vs. Containers Criteria **Containers** VM Image Size 3X Х Boot Time >10s~1s Computer Overhead >10% <5% Disk I/O Overhead Negligible >50% Isolation Good Fair Medium-High Low-Medium Security Poor **OS** Flexibility Excellent Excellent Evolving Management Low-Medium Impact on Legacy application High

 Ref: M. K. Weldon "The Future X Network: A Bell Labs Perspective," CRC Press, 2016, 476 pp., ISBN:9781498779142

 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/cse570-18/</u>
 ©2018 Raj Jain

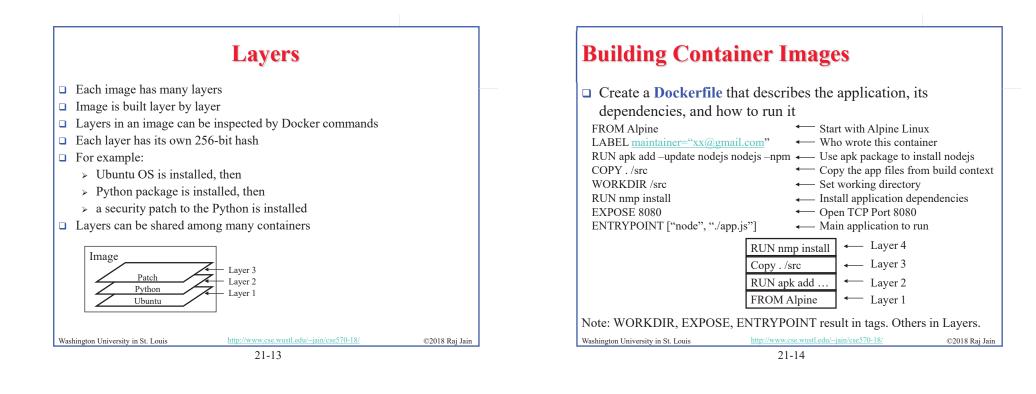


Image Registries

- Containers are built from images and can be saves as images
- Images are stored in registries
 - > Local registry on the same host
 - > Docker Hub Registry: Globally shared
 - > Private registry on Docker.com
- Any component not found in the local registry is downloaded from specified location
- Official Docker Registry: Images vetted by Docker
- □ Unofficial Registry: Images not vetted (Use with care)
- □ Each image has several tags, e.g., v2, latest, ...
- □ Each image is identified by its 256-bit hash

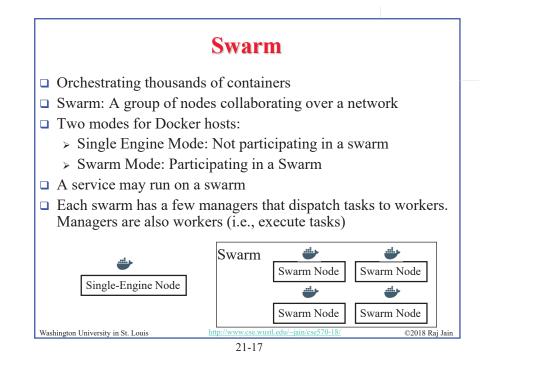
Washington University in St. Louis

Docker Commands

- docker container run: Run the specified image
- docker container ls: list running containers
- docker container exec: run a new process inside a container
- □ docker container stop: Stop a container
- docker container start: Start a stopped container
- □ docker container rm: Delete a container
- docker container inspect: Show information about a container

Open Container Initiative (OCI)

- □ A company called CoreOS defined alternative image format and container runtime API's
- Led to formation of OCI under Linux Foundation to govern container standards
 - > OCI Image spec
 - > OCI Runtime spec
- □ Everyone including Docker is now moving to OCI



Ref: https://www.opencontainers.org Washington University in St. Louis

©2018 Rai Jain

21-15

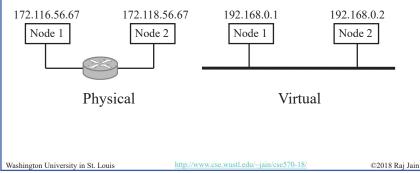
21-16

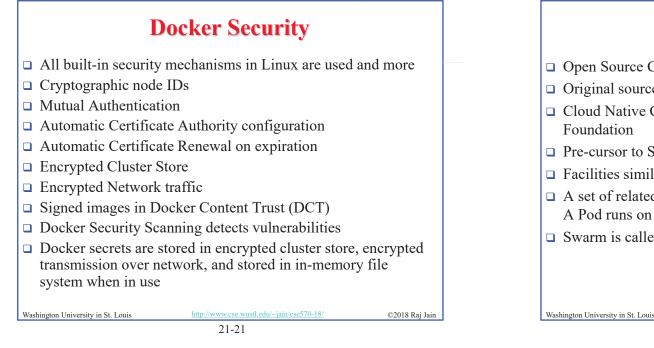
Swarms (Cont)

- □ The managers select a leader, who really keeps track of the swarm
- □ Assigns tasks, re-assigns failed worker's tasks, ...
- Other mangers just monitor passively and re-elect a leader if leader fails
- Services can be scaled up or down as needed
- □ Several Docker commands:
 - > docker service : Manage services
 - > docker swarm: Manage swarms
 - > docker node: Manage nodes

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/ 21-18


©2018 Raj Jain



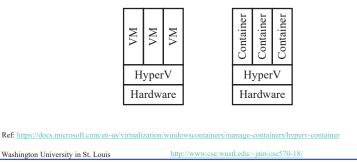
Docker Swarm Commands docker swarm init docker swarm join-token docker node ls docker service create docker service ls docker service ps docker service inspect docker service update docker service rm

Docker Overlay Networking

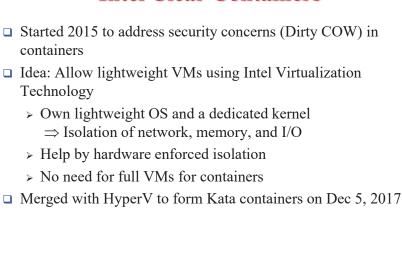
- □ Nodes in a swarm may not be in the same LAN
- VXLAN is used to provide virtual overlay networking
- □ VXLAN was discussed in another module of this course

Kubernetes

- Open Source Container Orchestration alternative
- □ Original source released by Google
- □ Cloud Native Computing Foundation (CNCF) project in Linux Foundation
- □ Pre-cursor to Swarms
- □ Facilities similar to Swarms
- □ A set of related containers is called a "Pod"
 - A Pod runs on a single host.
- □ Swarm is called a "Cluster"

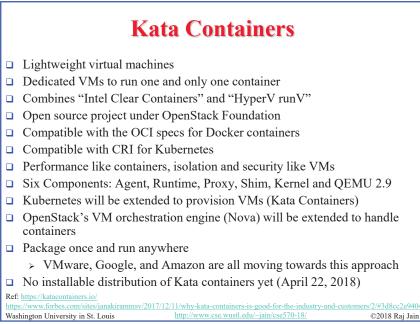

http://www.cse.wustl.edu/~jain/cse570-18/ 21-22

Intel Clear Containers


Hyper-V Containers

□ Microsoft allows two kinds of containers:

- > Windows Server Containers: Multiple containers on a single VM (like Docker containers)
- > Hyper-V containers: Each container runs on its own VM \Rightarrow No need for a Linux



©2018 Rai Jain

Ref: https://clearlinux.org/container Washington University in St. Louis

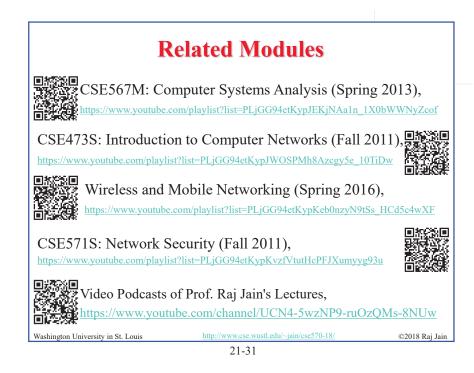
©2018 Rai Jain

21-25

Summary Joint Constant of Constan

	Acronyms			
	API	Application Programming Interface		
	CapEx	Capital Expenditure		
	CE	Community Edition		
	CLI	Command Line Interface		
	CNCF	Native Computing Foundation		
	DCT	Docker Content Trust		
	EE	Enterprise Edition		
	ID	Identifier		
	ISBN	International Standard Book Number		
	LAN	Local Area Network		
	OpEx	Operational Expenses		
	OS	Operating System		
	TCP	Transmission Control Protocol		
	VM	Virtual Machine		
Was	shington University in St	t. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©24	018 Raj Jain	

References □ N. Poulton, "Docker Deep Dive," Oct 2017, ISBN: 9781521822807 (Not a Safari Book) Highly Recommended. Parminder Singh Kocher, "Microservices and Containers, First edition," Addison-Wesley Professional, April 2018, 304 pp., ISBN:978-0-13-459838-3 (Safari Book). □ Russ McKendrick; Pethuru Raj; Jeeva S. Chelladhurai; Vinod Singh, "Docker Bootcamp," Packt Publishing, April 2017, 196 pp., ISBN:978-1-78728-698-6 (Safari Book). □ Russ McKendrick; Scott Gallagher, "Mastering Docker - Second Edition," Packt Publishing, July 2017, 392 pp., ISBN:978-1-78728-024-3 (Safari Book). □ Jeeva S. Chelladhurai; Vinod Singh; Pethuru Raj, "Learning Docker -Second Edition," Packt Publishing, May 2017, 300 pp., ISBN:978-1-78646-292-3 (Safari Book). Washington University in St. Louis ©2018 Rai Jain



21-29

©2018 Raj Jain

Scan This to Download These Slides

