Cloud Computing

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-18/

Washington University in St. Louis

p://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

20 - 1

- 1. Genesis of Cloud Computing
- 2. What is Cloud Computing?
- 3. Why Use Clouds?
- 4. Cloud Deployment Models
- 5. Cloud Software and Standards
- 6. Software Defined Intelligence

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

20-2

Genesis of Cloud Computing

- □ August 25, 2006: Amazon announced EC2
 ⇒ Birth of Cloud Computing in reality
 (Prior theoretical concepts of computing as a utility)
- ☐ Amazon's CEO was amazed by the number of computers in their datacenter and their low utilization
- □ Computing facilities are designed for peak load (Christmas)
- □ Needed a way to rent unused capacity, like renting their warehouses and other infrastructure
 ⇒ Develop an application programming interfaces (APIs) to remotely use computers.
- □ So began the computer rental business that we now call cloud computing.
- ☐ Sharing an underutilized resource is good for cloud service customers as well as for the cloud service providers.

Ref: Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Magazine, Nov 2013, pp. 24-31, ISSN: 01636804, DOI: 10.1109/MCOM.2013.6658648, http://www.cse.wustl.edu/~jain/papers/net_virt.htm

/ashington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

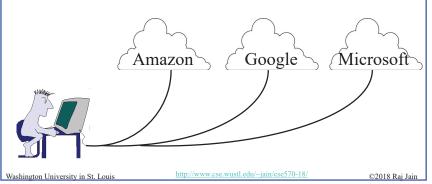
Clouds Large Datacenters Clouds Low Average Demand Virtualization Storage/Compute/ Network High Speed Networking

20-3

What is Cloud Computing?

- □ Cloud computing is a model for enabling convenient, ondemand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.
 - -National Institute of Standards and Technology (NIST) http://www.nist.gov/itl/cloud/
- **□** Key Characteristics:
 - > On-Demand self-service
 - > Scalable
 - > Shared
 - > Ubiquitous access
 - > Rapid provisioning/released
 - > Minimal management

Washington University in St. Louis


://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jai

20-5

Cloud Computing as a Utility

- □ Cloud computing is a utility like water, electricity, telephone
- □ Just turn on your computer and get computing storage and other resources as you need it and pay for it by usage.
- □ Computers include smart phones, tablets, laptops, desktops, ...

20-6

Attributes of a Cloud Service

- □ **Off-Premise**: Out-side the company firewall. Connected via Internet Belongs to a service provider
- □ Elasticity: Scalable up or down rapidly.
- □ Flexible Billing: Usage or flat rate. Payment or advertising-paid (as in Google docs)
- Multi-tenancy: Cost optimization of sharing
- □ Universal Access: Available to anyone
- □ Virtualization: Easier allocation of resources
- □ Service: Provides both management and computational APIs.
- □ Service level agreement: Different levels

Ref: John Rhoton, "Cloud Computing Explained: Implementation Handbook for Enterprises," Recursive Press, 2009, ISBN:0956355609

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

Networking Services

- One DHCP assigned address per VM is standard.
 Static/global IP addresses are provided at an extra cost
- Load balancing
- □ Virtual firewalls
- □ Private VLANs
- □ Access control lists of IP addresses that can access
- □ VPN connecting enterprise to the cloud
- Round-robin DNS for load balancing
- □ Content compression
- ☐ Geographical load distribution, e.g., Big-IP global traffic manager

Ref: John Rhoton, "Cloud Computing Explained: Implementation Handbook for Enterprises," Recursive Press, 2009, ISBN:0956355609

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

20-8

Cloud Computing Statistics

By 2020:

- □ 11/12th of workload in **clouds**, 1/12th in traditional data center
- □ 92% Data center IP traffic in clouds, 8% in traditional data center
- □ 3X growth in cloud workload in 5 years 3X growth in IP traffic in 5 years
- □ 5X growth in data center storage 7/8th in cloud, 1/8th in traditional data centers 2/3rd in public clouds, 1/3rd in private clouds
- □ 59% of consumers will use cloud storage (Under estimate)
- □ SDN/NFV transporting 22% of datacenter traffic to 44% by 2020

Ref: Cisco, "Cisco Global Cloud Index: Forecast and Methodology, 2015-2020," 2016,

https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

20-9

Why Cloud?

□ Clouds are better than private data center, because of they are on-demand, large-scale, and dispersed.

10 Laws of Cloudonomics

- 1. Utility services cost less even though they cost more. (Customers don't pay when they don't use it).
- 2. On-Demand trumps forecasting. (Forecasting is often wrong.)
- 3. The peak of the sum is never greater than the sum of the peaks.
- 4. Aggregate demand is smoother than individual.
- 5. Average unit costs are reduced by distributing fixed costs over more units of output.

Ref: Joe Weinman, "The 10 Laws of Cloudonomics," Sep 7, 2008, http://gigaom.com/2008/09/07/the-10-laws-of-cloudonomic http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Gray's Economy

- ☐ Jim Gray observed in 2003 that one dollar equates to:
 - > 1 GB sent over the WAN
 - > 10 Tera CPU operations
 - > 8 hours of CPU time
 - > 1 GB of disk space
 - > 10 M Databases accesses
 - > 10 TB of disk bandwidth
 - > 10 TB of LAN bandwidth
 - ⇒ WAN bandwidth is 10000 times more expensive than LAN
 - ⇒ Move program to the data not data to the programs
- ☐ In the last 10 years, networks have become faster but not at the same speed as processors ⇒ Networks are economic bottleneck
 - ⇒ Remote (Cloud) computing is good for processor intensive jobs, e.g., image processing

Ref: Jim Gray, Microsoft Large Databases and Grid Computing, 21 May 2003,

ttp://research.microsoft.com/~Gray/talks/WebServices_Grid.ppt

Nashington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

20 - 10

10 Laws of Cloudonomics (Cont)

6. Superiority in numbers is the most important factor in the result of a combat

(Numerical superiority is the key to winning battles.)

7. Space-time is a continuum.

(You can reduce time by having more VMs)

- 8. Dispersion is the inverse square of the latency.
- 9. Don't put all your eggs in one basket. (High reliability with many data centers per CSP).
- 10. An object at rest tends to stay at rest.

(Private datacenters are located in suboptimal locations: headquarters).

While cloud data centers are located optimally)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

20-12

©2018 Rai Iair

Barriers to Cloud Adoption

1. Security:

- > Is our data secure?
- > How can we audit security?
- > Will my data be erased on deletion?
- ▶ ..

2. Compliance:

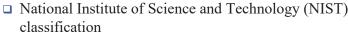
> Will we be compliant with risk, security, privacy laws?

3. Interoperability:

- > Can I take my workload from provider to provider?
- > Not easily
- **4. Service Level Management**: Is the billing accurate? What happens on failures? Is the capacity sufficient?

Ref: https://en.wikipedia.org/wiki/Cloud_computing_issues, https://en.wikipedia.org/wiki/Cloud_computing_security
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Rai Jain

20 - 13


Cloud Deployment Models

Hybrid

Public Private

Private

Private

- □ **Public Cloud**: Offered by large companies for use by anyone who pays. Least expensive and least secure.
- □ **Private Cloud:** Owned by a specific entity and used only by that entity. More expensive and more secure.
- □ **Community Cloud**: Shared by multiple organizations who share a common cause. Did not materialize in practice.
- **Hybrid Cloud**: Cloud consisting of two or more Public, Private cloud. E.g., Private cloud for sensitive data and public cloud for less sensitive data

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Community

Barriers to Cloud Adoption (Cont)

5. Tools:

> How can I automate provisioning, monitoring, management

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

20-14

Cloud Deployment Models (Cont)

- □ Virtual Private Cloud: Private cloud within a public cloud
- Multi-Cloud: Multiple cloud providers, e.g., Amazon, Google, and Azure
- □ **Distributed Cloud**: Combine machines in many different locations
- Edge Cloud: Cloud on the carrier networks edge, e.g., cell towers or central offices

Ref: https://en.wikipedia.org/wiki/Virtual_private_cloud

shington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

20-15

Washington University in St. Louis

Fog Computing

Washington University in St. Louis

20 - 17

Fog Computing (Cont)

- □ Location Aware and Location Sensitive
 - ⇒ Low latency ⇒ Computing in micro clouds
 - \Rightarrow Computing in the edge \Rightarrow Computing everywhere
 - \Rightarrow Fog
- Geographically distributed ⇒ Everywhere/Anywhere
- □ Large Scale
- Mobility
- □ Real-Time

Ref: F. Bonomi, et al., "Fog Computing and Its Role in the Internet of Things," ACM MCC'12, August 17, 2012, Helsinki, Finland

20 - 18

Cloud Service Models

Application Operating System Hardware

- ☐ Infrastructure as a service (IaaS): Provide virtual machines, storage, and network facilities that users can manage. Users install their own operating systems and software, e.g., Amazon Web Services
- □ Platform as a service (PaaS): Includes hardware and operating systems, development and administrative tools. Users develop and deploy their software, e.g., Microsoft Azure
- □ Software as a service (SaaS): Complete application with a user interface, e.g., Google Docs, Gmail, Salesforce.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

©2018 Rai Jair

Everything As A Service

- □ https://en.wikipedia.org/wiki/Banking as a Service
- □ https://en.wikipedia.org/wiki/Content as a service
- https://en.wikipedia.org/wiki/Data as a service
- https://en.wikipedia.org/wiki/Function as a service
- □ https://en.wikipedia.org/wiki/IT as a service
- https://en.wikipedia.org/wiki/Location as a service
- □ https://en.wikipedia.org/wiki/Mobile backend as a service
- https://en.wikipedia.org/wiki/Network as a service
- https://en.wikipedia.org/wiki/Payments as a service
- https://en.wikipedia.org/wiki/Recovery as a service
- https://en.wikipedia.org/wiki/Security as a service
- □ https://en.wikipedia.org/wiki/Unified communications as a service
- https://en.wikipedia.org/wiki/As a service
- □ https://en.wikipedia.org/wiki/Category:As a service

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Iair

20-19 20-20

Bridges, Brokers, Gateways

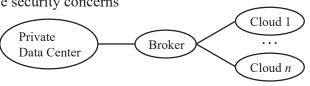
- □ **Bridge**: Connecting private data center networks to clouds
- **Brokers**: Connecting services between private data centers and clouds. E.g., authentication (identity), access (authorization), delivery (server/cloud selection)
- □ **Gateways**: Connecting private storage to cloud storage. Thereby, increasing the size of storage pool. Using cloud storage for overflow, backup, and disaster recovery.

Ref: L. MacVittie, "Integrating the Cloud: Bridges, Brokers, and Gateways," 2012, http://www.f5.com/pdf/white-papers/f5-vmware-integrating-cloud-white-paper.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair


20-21

Open Source Cloud Management Software

- □ OpenStack: Open source software to build/manage private/public clouds
 - > Initiated by NASA and Rackspace Hosting
 - Many components: Nova (Compute), Neutron (Networking), Cinder (Storage), Glance (image), Horizon (dashboard), Heat (Orchestration),
 - > Utilizes plugins.
- □ CloudStack: Open Source Sw to manage cloud services
 - > Supports AWS API and OCCI API
 - > Similar to OpenStack
 - > Also under Apache Foundation

Ref: http://www.openstack.org, https://en.wikipedia.org/wiki/OpenStack, https://en.wikipedia.org/wiki/Apache_CloudStack
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Ja

- Too many cloud service providers (like airlines)
- □ Cloud service brokers help you find the right subset of cloud providers for your needs
- May provide their own cloud services
- □ Provide simplified/unified interface to multiple providers with a single sign on
- ☐ Help negotiate cloud contracts
- ☐ Help resolve security concerns

Ref: W. Bumpus, Cloud Service Brokers: What You Need to Know, http://www.infoq.com/articles/cloud-service-brokers Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2

20-22

Open Source Cloud Management (Cont)

- □ **Cloud Foundry**: Multi-Cloud Application platform under Linux Foundation
- □ Scalr: Manage multi-cloud infrastructure
- Eucalyptus: Build AWS-compatible private and hybrid clouds
- □ **oVirt**: Management platform to manage virtual nodes, storage, and network resources.
 - > Similar to VMware's vSphere.
 - > Allows allocating VMs to host: manual, optimized, pinned

20-24

©2018 Raj Jair

- > Live migration of VMs
- > Monitor resource usage
- > Manage quota for use of resources

Ref: https://en.wikipedia.org/wiki/Cloud_Foundry, https://en.wikipedia.org/wiki/Scalr, https://en.wikipedia.org/wiki/Eucalyptus_(software), https://en.wikipedia.org/wiki/OVirt, http://www.ovirt.org
Washington University in St. Louis
http://www.cse.wustl.edu/~jain/cse570-18/

Open Source Cloud Management (Cont)

- □ OpenVZ: Open Virtuozzo
 - > Allows multiple containers on Linux
- □ Open Virtual Alliance (OVA):
 - > Linux Foundation project for KVM hypervisor
- openQRM: Cloud computing management platform
 - > Bare metal and VM deployment
 - > Supports KVM, Linux Vserver, OpenVZ, Xen, ...
- □ Proxmox Virtual Environment (Proxmox VE):
 - > Server virtualization environment
 - > VMs and Containers
 - > Web console with REST API

Ref: https://en.wikipedia.org/wiki/Open_Virtualization_Alliance, https://en.wikipedia.org/wiki/OpenQRM, https://en.wikipedia.org/wiki/Proxmox_Virtual_Environment,

Washington University in St. Louis

www.csc.wustr.cdu/~jani/csc.

©2018 Rai Jair

20-25

Cloud Data Management Interface (CDMI)

- ☐ Standard interface to create, retrieve, update and delete data elements from the cloud
- Developed by Storage Networking Industry Association (SNIA) and now ISO/IEC standard
- ☐ Clients can discover the capabilities of the cloud storage Used by administrative and management applications to manage containers, accounts, security access, and monitoring and billing information
- Example: GET Container (List objects in a container)
 GET Container cdmi_geographic_placement_provided
 metadata item (Discover the geographic locations) in which the container is stored)

Ref: SNIA, "Cloud Data Management Interface (CDMI)," http://www.snia.org/cdmi

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Open Source Cloud Management (Cont)

- □ OpenNebula: Manage data center infrastructure
 - > Offer cloud services in a data center
- **BOSCH**: Life-cycle management of large scale distributed services
- □ **AppScale**: Deploy unmodified Google App Engine applications over other clouds
- □ Nimbus: Toolkit to provide IaaS via Amazon EC2 APIs
- **NextCloud**: Client-Server software to create file hosting cloud services, like Dropbox

Ref: https://en.wikipedia.org/wiki/OpenNebula, https://en.wikipedia.org/wiki/List of commercial open-source applications and services, https://en.wikipedia.org/wiki/BoSH (software), https://en.wikipedia.org/wiki/AppScale,

https://en.wikipedia.org/wiki/Nimbus (cloud computing), https://en.wikipedia.org/wiki/Nextcloud,

https://en.wikipedia.org/wiki/Category:Free software for cloud computing, https://en.wikipedia.org/wiki/Category:Open-source cloud application washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

20-26

Cloud APIs

- Open Grid Forum, "Open Cloud Computing Interface (OCCI)," <u>http://www.ogf.org/gf/group_info/view.php?group=occi-wg</u>
- □ VMware Virtual Cloud Director (vCD) API: http://www.vmware.com/pdf/vcd_10_api_guide.pdf
- □ Amazon Web Services (AWS) API: http://aws.amazon.com/developertools/Amazon-EC2/351
- $\begin{tabular}{ll} \hline \square & ElasticHosts API: $\underline{http://www.elastichosts.com/cloud-hosting/api}$ \\ \hline \end{tabular}$
- ☐ FlexiScale (Cloud management and orchestration software for private clouds) API: http://www.flexiant.com/reference/api
- ☐ GoGrid API: http://www.gogrid.com/cloud-hosting/cloud-api.php
- □ Sun Cloud API: http://kenai.com/projects/suncloudapis/pages/Home
- OpenStack APIs: http://docs.openstack.org/api/api-specs.html
- ☐ Cloud Application Management for Platforms (CAMP): Managing PaaS. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=camp

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Apache Deltacloud

- Open source project to provides API server and drivers necessary for connecting to various cloud providers
- Supports 3 APIs: Deltacloud classic, CIMI standard, EC2
- Translates the input API to cloud specific API Takes care of δ = difference
- Allows moving applications to various clouds.
- □ HTML interface allows controlling cloud infrastructure using a browser on a computer, mobile phone or tablet

Ref: http://deltacloud.apache.org/about.html

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

20 - 29

Google's SDI Applications

- Beyond short snippets: deep networks for video classification
- □ Diagnosing automatic white-listing for dynamic remarking ads using hybrid ASP
- □ Grapheme-to-Phoneme conversion using long short-term memory recurrent neural networks
- □ Cicada: predictive guarantees for cloud network bandwidth
- □ Show and Tell: a neural image caption generator
- Large scale video classification with convolutional neural networks
- Measuring online audiences
- Ad-click prediction
- Modeling of eye-mouse behavior

Ref: Google, "Artificial Intelligence and Machine Learning,"

http://www.cse.wustl.edu/~jain/cse570-18/

Software Defined Intelligence

- □ SDI = SDN + Machine Learning
- □ **Predictive Operation**: Discover new relationships from network data
 - > Predictive Security: Predict security attacks rather than react to attacks
 - > Detect Spam Sources/Prefixes
- Network data generated by too many sources
 - ⇒ Too much to process by humans
- Analytics = Brute force style of data analysis

Ref: David Meyer, "Software Defined Intelligence: A New Interdisciplinary Approach to Intelligent Infrastructure," Networking Field Day 8, Sept 11, 2014, http://www.1-4-5.net/~dmm/talks/nfd8.pptx

Summary

http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

20 - 30

computing resources

Cloud computing

4. Many service models: IaaS, PaaS, SaaS

1. Computing resources are designed for peak load

5. Many APIs \Rightarrow Need for standardization. Open source software is becoming the standard by default.

⇒ Cloud computing started with need to rent-out excess

2. Network virtualization allowed datacenters to be shared =>

3. Clouds can be public or private. Now mostly hybrid.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

20-31

©2018 Rai Jair

References

- □ V. Josyula, et al., "Cloud Computing: Automating the Virtualized Data Center," Cisco Press, 2011, 336 pp., ISBN:1-58720-434-7
- Cisco, "Cisco Global Cloud Index: Forecast and Methodology, 2015-2020," 2016, https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gei/white-paper-c11-738085.pdf
- G. Santana, "Datacenter Virtualization Fundamentals," Cisco Press, 2014, ISBN: 1587143240
- John Rhoton, "Cloud Computing Explained: Implementation Handbook for Enterprises," Recursive Press, 2009, ISBN:0956355609
- Joe Weinman, "The 10 Laws of Cloudonomics," Sep 7, 2008, http://gigaom.com/2008/09/07/the-10-laws-of-cloudonomics

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

20-33

References (Cont)

- SNIA, "Cloud Data Management Interface (CDMI)," http://www.snia.org/cdmi
- W. Bumpus, Cloud Service Brokers: What You Need to Know, http://www.infoq.com/articles/cloud-service-brokers
- □ David Meyer, "Software Defined Intelligence: A New Interdisciplinary Approach to Intelligent Infrastructure," Networking Field Day 8, Sept 11, 2014, http://www.1-4-5.net/~dmm/talks/nfd8.pptx
- □ Google Official Blog, "Better data centers through machine learning," may 28, 2014, http://googleblog.blogspot.com/2014/05/better-data-centers-through-machine.html
 https://en.wikipedia.org/wiki/Power usage effectiveness
- Google, "Artificial Intelligence and Machine Learning," http://research.google.com/pubs/ArtificialIntelligenceandMachineLearning. html
- □ J. Kohler, E. Skvortsov, W. Vos, "A method for measuring online audiences," 2013, http://research.google.com/pubs/archive/41089.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

n/cse570-18/

©2018 Raj Jain

References (Cont)

□ Raj Jain and Subharthi Paul, "Network Virtualization and Software Defined Networking for Cloud Computing - A Survey," IEEE Communications Magazine, Nov 2013, pp. 24-31, ISSN: 01636804, DOI: 10.1109/MCOM.2013.6658648, http://www.cse.wustl.edu/~jain/papers/net_virt.htm

- Jim Gao, "Machine learning applications for data center optimization," 2014, http://research.google.com/pubs/archive/42542.pdf
- □ Jim Gray, Microsoft Large Databases and Grid Computing, 21 May 2003, http://research.microsoft.com/~Gray/talks/WebServices Grid.ppt
- □ K. Lacurts, J. Mogul, H. Balakrishnan, Y. Turner, "Cicada: Predictive Guarantees for Cloud Network Bandwidth," MIT-CSAIL-TR-2014-004, http://research.google.com/pubs/archive/42462.pdf
- □ L. MacVittie, "Integrating the Cloud: Bridges, Brokers, and Gateways," 2012, http://www.f5.com/pdf/white-papers/f5-vmware-integrating-cloud-white-paper.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

20-34

Open Source Software

4			
http://	/www	openstac	k oro

- □ http://www.cloudstack.org
- □ http://deltacloud.apache.org/about.html
- □ http://opennebula.org/
- □ http://openvirtualizationalliance.org/resources
- □ http://www.openqrm-enterprise.com/openqrm-tour.html
- □ http://www.ovirt.org/Home
- □ <u>http://www.proxmox.com/proxmox-ve/features</u>
- □ http://www.xenproject.org/developers/teams/xapi.html

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Related Web Sites

- Distributed Management Taskforce, http://www.dmtf.org/ -----Develops standards for cloud management
- Storage Networking Industry Association, http://www.snia.org/
 Cloud Data Management Interface (CDMI) Standard
- □ Cloud Security Alliance, https://cloudsecurityalliance.org/
- □ OpenCloud, http://www.opencloud.com/
- □ Cloud Standards Customer Council (CSCC), http://www.cloud-council.org/
- Global Inter-Cloud Technology Forum (GICTF), http://www.gictf.jp/index_e.html
- Open Data Center Alliance (ODCS).
 http://www.opendatacenteralliance.org/
- ☐ The Open Group, http://www.opengroup.org/
- □ TeleManagement Forum (TMF), http://www.tmforum.org/
- □ NIST Cloud Computing, http://www.nist.gov/itl/cloud/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

20-37

Wikipedia Links

Technology:

- □ https://en.wikipedia.org/wiki/Cloud computing
- □ https://en.wikipedia.org/wiki/Cloud computing architecture
- https://en.wikipedia.org/wiki/Cloud computing security
- □ https://en.wikipedia.org/wiki/Cloud broker
- □ https://en.wikipedia.org/wiki/Fog computing
- □ https://en.wikipedia.org/wiki/Virtual private cloud
- □ https://en.wikipedia.org/wiki/Managed private cloud

Software:

- □ https://en.wikipedia.org/wiki/OpenStack
- □ https://en.wikipedia.org/wiki/Apache CloudStack

Organizations:

- □ https://en.wikipedia.org/wiki/Cloud Security Alliance
- □ https://en.wikipedia.org/wiki/Open Cloud Computing Interface
- □ https://en.wikipedia.org/wiki/Open Data Center Alliance
- □ https://en.wikipedia.org/wiki/Open Virtualization Alliance

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18

©2018 Raj Jain

Standards

□ DMTF, "Cloud Infrastructure Management Interface – Common Information Model (CIMI-CIM) Specification," V1.0.0, Dec 14, 2012, 21 pp.

 $\frac{http://dmtf.org/sites/default/files/standards/documents/DSP026}{4~1.0.0.pdf}$

□ ISO/IEC 17826:2012, "Information Technology – Cloud Data Management Interface (CDMI),"

http://www.iso.org/iso/catalogue detail.htm?csnumber=60617

> SNIA's technical position on Cloud Data Management Interface (CDMI), V1.0.2,

http://snia.org/sites/default/files/CDMI%20v1.0.2.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

20-38

Abbreviations

	API	Application Programming Interface
	ASP	Application Service Provider
	AWS	Amazon Web Services
	CapEx	Capital Expenditure
	CDMI	Cloud Data Management Interface
	CEO	Chief Executive Officer
	CIM	Common Information Model
	CIMI	Cloud Infrastructure Management Interface
	CPU	Central Processing Unit
	CSAIL	Computer Science and Artificial Intelligence Lab at MIT
	CSCC	Cloud Standards Customer Council
	CSP	Cloud Service Provider
	DHCP	Dynamic Host Control Protocol
	DMTF	Distributed Management Task Force
	DNS	Domain Name Service
	DOI	Document Identifier
Was	hington University in St	Louis http://www.cse.wustl.edu/~iain/cse570-18/

20-40

Abbreviations (Cont)

	EC2	Elastic Compute 2	
	GB	Giga Byte	
	GICTF	Global Inter-Cloud Technology Forum	
	GIMPS	Great Internat Marsenne Prime Search	
	HIV	Human Inmmunodeficiency Virus	
	HTML	Hypertext Mark Up Language	
	IaaS	Infrastructure as a Service	
	IDS	Intrusion Detection System	
	IEC	International Electrotechnical Commission	
	IEEE	Instituion of Electrical and Electronics Engineers	
	IP	Internet Protocol	
	ISBN	International Standard Book Number	
	ISO	International Standards Organization	
	ISSN	International Standard Serial Number	
	IT	Information Technology	
	KVM	Kernel-based Virtual Machine	
Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse570-18/	©2018 Raj Jain

20-41

Abbreviations (Cont)

SETI	Search for Extraterrestrial Intelligence
SNIA	Storage Networking Industry Association
SQL	Structured Query Language
TB	Tera Byte
TMF	TeleManagement Forum
TR	Technical Report
vCD	Virtual Cloud Director
VE	Proxmox Virtual Environment
VM	Virtual Machine

vNICVirtual Network Interface CardVPNVirtual Private Networks

□ WAN Wide Area Networks

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

20-43

©2018 Raj Jain

Abbreviations (Cont)

LAN	Local Area Network
NASA	National Aeronautics and Space Administration
.NET	Dot Networking
NFV	Network Function Virtualization
NIST	National Institute of Standards and Technology
OCCI	Open Cloud Computing Interface
ODBC	Open Database Connectivity
ODCS	Open Data Center Alliance
openQRM	Open Source Qlusters Resource Management
OpenVZ	Open Virtuozzo
OS	Operating System
oVirt	Open Virtualization
PaaS	Platform as a Service
PUE	Power Usage Efficiency
QoE	Quality of Experience
SaaS	Software as a Service
SDI	Software Defined Intelligence

20-42

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Software Defined Networking

SDISDN

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

ttps://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016), https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures, https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis