Introduction to Internet of Things

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-18/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

11-1

What are Things?

- □ Thing = Not a computer
- □ Phone, watches, thermostats, cars, Electric Meters, sensors, clothing, band-aids, TV,...
- □ Anything, Anywhere, Anytime, Anyway, Anyhow (5 A's)

Ref: http://blog.smartthings.com/iot101/iot-adding-value-to-peoples-lives/ Washington University in St. Louis http://www.cse.wustl

http://www.cse.wustl.edu/~jain/cse570-18/

@2018 Pai Jain

- 1. What are Things?
- 2. What's Smart and Why IoT Now?
- B. IoT Research Challenges including Datalink and Networking Issues
- 4. Recent Protocols for IoT
- 5. Fog Computing and Multi-Cloud Management

Note: This is part 1 of a series of class lectures on IoT. MQTT, 6LowPAN, and RPL are covered in other parts.

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

11-2

Internet of Things

- □ Less than 1% of things around us is connected. Refrigerator, car, washing machine, heater, a/c, garage door, should all be connected but are not.
- ☐ From 10 Billion today to 50 Billion in 2020 Should include processes, data, things, and people.
- □ \$14 Trillion over 10 years ⇒ Third in the list of top 10 strategic technologies by Gartner (After Mobile devices, Mobile Apps, but before Clouds, ...)
- □ a.k.a. Internet of Everything by Cisco Smarter Planet by IBM

Ref: "Gartner Identifies Top 10 Strategic Technologies,"

http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html

Ref: J. Bradley, "The Internet of Everything: Creating Better Experiences in Unimaginable Ways," Nov 21, 2013,

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

11-3

Sample IoT Applications

Smart Grid

Smart Health

Smart Home

Smart Cities

Smart Industries

Smart TV

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

©2018 Rai Jain

11-5

Why IoT Now?

- IoT = Sensing + Communication + Computation
- Micro-Sensors: Temperature, Moisture, Pressure, air quality,
- Tags: Radio Frequency Id (RFID), Quick Response (QR) Codes, ...
- Energy Efficient Communication: Small or no batteries, Personal area communication (PAN), Bluetooth, ZigBee, ...
- Micro-Computing: Micro multi-core chips, Raspberry Pi, Intel Galileo, Arduino, ...
- Cloud Computing: Little or no local computing
- Open/Small operating systems: Linux

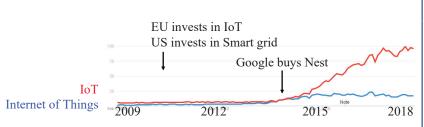
Ref: CTIA, "Mobile Cyber security and the Internet of Things,"

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18

What's Smart?

- \Box Old: Smart = Can think \Rightarrow Computation = Can Recall ⇒ Storage
- Now: Smart = Can find quickly, Can Delegate ⇒ Communicate = Networking
- □ Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

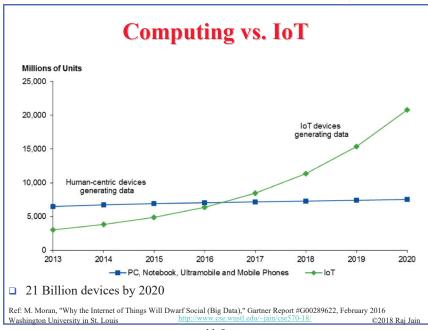


http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

©2018 Rai Jain

11-6

Google Trends



- □ IERC-European Research Cluster on the Internet of Things funded under 7th Framework in 2009
 - ⇒ "Internet of European Things"
- □ US interest started in 2009 w \$4B funding for **smart grid** in American Recovery and Reinvestment Act of 2009
- Venture capital interest jumped when Google bought Nest for \$3.2B in 2014.

http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Loui

©2018 Rai Jain

11-7

11-9

A 7-Layer Model of IoT Services Energy, Entertainment, Health, Education, Transportation, ... Apps and SW SDN, SOA, Collaboration, Apps, Clouds Analytics Machine learning, predictive analytics, Data mining, ... Security Management Integration Sensor data, Economic, Population, GIS, ... Interconnection DECT/ULE, WiFi, Bluetooth, ZigBee, NFC, ... Sensors, Cameras, GPS, Meters, Smart phones, ... Acquisition Market Smart Grid, Connected home, Smart Health, Smart Cities, ... Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

IoT Business Opportunity

- \$1.7 Trillion by 2020 IDC
- □ \$7.1 Trillion Gartner
- □ \$10-15 Trillion just for Industrial Internet GE
- \$19 Trillion Internet of Everything Cisco

Ref: http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/
http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-estimates-and-forecasts/
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj.

11-10

Areas of Research for IoT

- 1. **PHY**: Smart devices, sensors giving real-time information, *Energy Harvesting*
- **Datalink**: WiFi, Bluetooth, ZigBee, 802.11ah, ... Broadband: DSL, FTTH, Wi-Fi, 5G, ...
- 3. **Routing**: *Multiple interfaces*, Mesh networking, ...
- Analytics: Big-data, data mining, Machine learning, Predictive analytics, ...
- Apps & SW: SDN, SOA, Cloud computing, Web-based collaboration, Social networking, HCI, Event stream processing, ...
- 6. **Applications**: Remote health, On-line education, on-line laboratories, ...
- 7. Security: Privacy, Trust, Identity, Anonymity, ...

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

11-11

11-13

Datalink Issues

- Energy efficiency
 - \rightarrow Need to decrease energy/bit by a factor of 1000
 - > Energy/bit has gone down by a factor of 2 per year
 - > Either wait ten years or design better protocols
- Small messages ⇒ Need low overhead
- □ Limited computing ⇒ Light weight protocols
 ⇒ lightweight Encryption, authentication, security
- Quality of Information (QoI)

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18

©2018 Rai Jain

((to))

Privacy Issue: Beacons

- □ Advertizing based on proximity
- □ Peripherals (your phone) broadcasts its presence if Bluetooth is turned on
- ☐ Primary aim of these broadcasts is to allow device discovery
- Advertising packets consist of a header and max 27B of payload with multiple TLV-encoded data items
 - ➤ May include signal strength ⇒ Distance
- □ iOS7 iPhones can send/received iBeacons
- ☐ Can be used for customized advertising, indoor location, geofencing
- □ PayPal uses this to identify you. You can pay using a PIN and your phone.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

11-14

Power per MB

Type	Bit rate	TX Power	mJoules/MB
802.11b	11Mb	50mW	36.4
802.11g	54Mb	50mW	7.4
802.11a	54Mb	200mW	29.6
802.15.1 Bluetooth	1Mb	1mW	8.0
802.15.3	55Mb	200uW	0.03

 Once connected, Bluetooth classic maintains connections even when there is no data. Low power but not low enough.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

11-15

Networking Issues

- \square Large number \Rightarrow 32-bit or 48-bit addressing not sufficient
- □ 32-bit IPv4 addresses too small
- 48-bit IEEE 802 too small
- □ 128-bit IPv6 addresses too large. Tiny things do not have energy to transmit such large addresses.
- □ 16-bit local addresses and 64-bit global addresses
- □ 6LowPAN, 6-to-NonIP

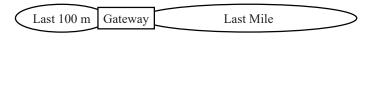
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

11-17

Legacy IoT Protocols


- **BACnet**: Building Automation and Control Network
- □ LonWorks: Local Operating Network (like BACnet)
- □ ModBus: Modicon (Schneider Electric)'s Serial Bus (<u>www.modbus.org</u>)
- □ KNX: Home and Building Automation Standard
- □ **Z-Wave**: Wireless Communication for Home Automation
- □ M-Bus: Bus for remote reading of gas and electric meters
- □ ANSI CI12.20: Electric Meter Accuracy and Performance
- □ **DLMS**: Device Language Message Specification
- □ COSEM: Company Specification for Energy Metering
- □ DALI: Digital Addressable Lighting Interface
- □ **EIB**: European Installation Bus
- □ **WirelessHART**: Wireless Highway Addressable Remote Transducer Protocol (<u>www.hartcomm.org</u>)

Ref: IEC 61158: Fieldbus for use in industrial control systems, Part 1 to 6, 2008
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Last 100m Protocols

- ☐ The Last Mile: Mobile and Broadband Access revolution Smart Grid, Smart Cities, Smart Industries
- ☐ The last 100m: Smart home
- □ The last meter: Smart Healthcare, Smart Wearable's

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jair

Recent Protocols for IoT

11-18

ion	MQTT, SMQTT, CoRE, DDS,	Security	Management
Sessi	AMQP , XMPP, CoAP, IEC, IEEE 1888,	IEEE 1888.3, TCG.	IEEE 1905, IEEE 1451, IEEE 1377, IEEE P1828, IEEE P1856
Network	Encapsulation 6LowPAN, 6TiSCH, 6Lo, Thread Routing RPL, CORPL, CARP WiFi, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3G/LTE, NFC, Weightless, HomePlug GP, 802.11ah, 802.15.4e, G.9959, WirelessHART, DASH7, ANT+, LTE-A, LoRaWAN, ISA100.11a, DigiMesh, WiMAX,	Oath 2.0, SMACK, SASL, EDSA, ace, DTLS, Dice,	
Datalink			

Ref: Tara Salman, Raj Jain, "A Survey of Protocols and Standards for Internet of Things," Advanced Computing and Communications, Vol. 1, No. 1, March 2017, http://www.cse.wustl.edu/~jain/papers/iot_accs.htm
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

11-20

Standardization

□ Almost every standards body is working on IoT:

> IEEE: 802.11, 802.15.4, HomePlug

> ZigBee Alliance: ZigBee Smart

> Bluetooth SIG: Bluetooth Smart

> IETF: RPL, 6LowPAN

> ITU:

> ETSI: DECT/ULE

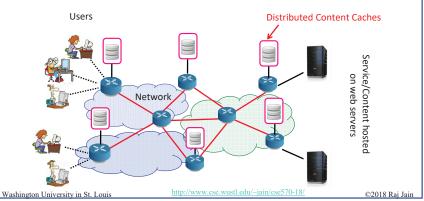
> IPSO, ...

□ Seven organizations joined together to avoid duplication: ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC ⇒ oneM2M

Ref: http://www.onem2m.org Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain


11-21

Trend: Computation in the Edge □ To service mobile users/IoT, the computation needs to come to edge ⇒ Micro-cloud on the tower ⇒ Mobile-Edge Computing | Micro-Clouds |

11-23

Past: Data in the Edge


☐ To serve world-wide users, latency was critical and so the data was replicated and brought to edge

11-22

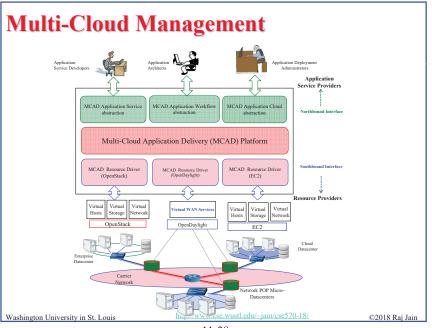
Trend: Multi-Cloud

 □ Larger and infrequent jobs serviced by local and regional clouds ⇒ Fog Computing

©2018 Raj Jain

Fog Computing If the cloud ever bid go bown, would it BE called Fog? Ref: http://community.spiccworks.com/topic/254392-fog-computing-replaces-cloud-as-new-tech-buzzword washington University in St. Louis Ref: http://www.cse.wustl.edu/-jain/csc570-18/

11-25


Mobile Healthcare Use Case Medical Application Service Provider Home sensors for patient monitoring Multi-Cloud Mobile Application Deployment and Optimization Platform SDN Hospital Insurance Co Cloud Controller Cloud Body Area Mobile 5G Carrier Network for Doctor mobile patient Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

Fog Computing (Cont)

- □ Location Aware and Location Sensitive
 - \Rightarrow Low latency \Rightarrow Computing in micro clouds
 - \Rightarrow Computing in the edge \Rightarrow Computing everywhere
 - \Rightarrow Fog
- □ Geographically distributed => Everywhere/Anywhere
- □ Large Scale
- Mobility
- □ Real-Time

Ref: F. Bonomi, et al., "Fog Computing and Its Role in the Internet of Things," ACM MCC'12, August 17, 2012, Helsinki, Finland Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jai

11-26

11-27

- Less than 1% of things are connected
 ⇒ IoT is a big opportunity for academics and industry
- 2. Smart Grid and Energy management lead the change.
- 3. Smartness comes from communication capability since the computation can be delegated
- Right at the knee: Academic and Startup Research opportunities in almost subfields of computing including hardware development, data analytics, security, and networking.
- Cloud computing everywhere leads to fog computing and multi-cloud computing ⇒ our MCAD project

Washington University in St. Louis

//www.cse.wustl.edu/~jain/cse570-

©2018 Rai Jain

11-29

Additional Reading

- Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, October 2012, 391 pp., ISBN:978-1-4398-9299-2 (Safari Book).
- □ Olivier Hersent; David Boswarthick; Omar Elloumi, "The Internet of Things: Key Applications and Protocols," John Wiley & Sons, February 1, 2012, 370 pp., ISBN:978-1-119-99435-0 (Safari Book).
- □ Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything," Apress, January 2014, 192 pp., ISBN:1-4302-5740-7 (Safari Book).
- □ Hakima Chaouchi, "The Internet of Things: Connecting Objects," John Wiley & Sons, June 2010, 288 pp., ISBN:978-1-848-21140-7 (Safari Book).
- □ Nitesh Dhanjani, "Abusing the Internet of Things," O'Reilly Media, Inc., August 2015, 250 pp., ISBN:978-1-4919-0233-2 (Safari Book).

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Reading List

□ Tara Salman, Raj Jain, "A Survey of Protocols and Standards for Internet of Things," Advanced Computing and Communications, Vol. 1, No. 1, March 2017, http://www.cse.wustl.edu/~jain/papers/iot_accs.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

11-30

Wikipedia Links

- □ https://en.wikipedia.org/wiki/Fog computing
- □ https://en.wikipedia.org/wiki/Industrial Internet
- □ https://en.wikipedia.org/wiki/Internet_of_Things
- □ <u>https://en.wikipedia.org/wiki/IPSO_Alliance</u>
- https://en.wikipedia.org/wiki/Machine_to_machine
- □ https://en.wikipedia.org/wiki/Multicloud
- □ <u>https://en.wikipedia.org/wiki/Nearables</u>
- □ <u>https://en.wikipedia.org/wiki/Smart_device</u>
- □ https://en.wikipedia.org/wiki/SmartThings
- https://en.wikipedia.org/wiki/Ubiquitous_computing
- □ https://en.wikipedia.org/wiki/Wearable_technology
- □ https://en.wikipedia.org/wiki/Web of Things

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

11-31

Acronyms			
	6LowPAN	IPv6 over Low Powered Personal Area Network	
	ACM	Automatic Computing Machinery Association	
	AMQP	Advanced Message Queueing Protocol	
	ANSI	American National Standards Institute	
	ANT	A proprietary open access multicast wireless sensor network	
	ANT+	Interoperability function added to ANT	
	API	Application Programming Interface	
	ARIB	Association of Radio Industries and Businesses (Japan)	
	BACnet	Building Automation and Control Network	
	CI12.20	ANSI Standard for Electric Meter Accuracy and Performance	
	CoAP	Constrained Application Protocol	
	COSEM	Company Specification for Energy Metering	
	CPS	Cyber Physical Systems	
	CPU	Central Processing Unit	
	CTIA	Cellular Telecommunication Industries Association	
	DARPA	Defense Advance Research Project Agency	
	DASH7	ISO 18000-7 RFID standard for sensor networks	
Wa	shington University in S	st. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain	

11-33

Acronyms (Cont)

		IPSO	IP for Smart Objects
		IPv4	Internet Protocol version 4
		IPv6	Internet Protocol version 6
		ISP	Internet Service Provider
		ITU	International Telecommunications Union
		KNX	Building automation protocol
		MB	Mega-byte
		MCAD	Multi-Cloud Application Deployment Platform
		MQTT	Message Queue Telemetry Transport
		NASA	National Aeronautical and Space Administration
		NEST	Name of a product
		NFC	Near field communication
		NIH	National Institute of Health
		NITRD	Networking and Info Tech Research and Development
		NonIP	Non-Internet Protocol
		NSF	National Science Foundation
L	Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

Acronyms (Cont)

	D T CT		
	DECT	Digital Enhanced Cordless Communication	
	DLMS	Device Language Message Specification	
	DoE	Department of Energy	
	EC2	Elastic Compute Cloud 2 (by Amazon)	
	ETSI	European Telecommunications Standards Institute	
	EU	European Union	
	FP7	Framework Program 7	
	GP	GreenPHY	
	GreenPHY	Green Physical Layer	
	HomePlug-G	P HomePlug Green PHY	
	IEEE	Institute for Electrical and Electronic Engineers	
	IERC	IoT-European Research Cluster	
	IETF	Internet Engineering Task Force	
	iOS	iPhone Operating System	
	IoT	Internet of Things	
	IP	Internet Protocol	
Was	shington University in St	t. Louis http://www.cse.wustl.edu/~jain/cse570-18/	©2018 Raj Jain

11-34

Acronyms (Cont)

	OAuth	Open Authorization protocol from IETF
	oneM2M	One Machine to Machine
	ONR	Office of Naval Research
	PAN	Personal area network
	PIN	Personal Identification Number
	PLC	Power Line Communication
	PoP	Point of Presence
	QoI	Quality of information
	QR	Quick Response
	RFID	Radio Frequency Identifier
	RPL	Routing Protocol for Low Power and Lossy Networks
	SDN	Software Defined Networking
	SIG	Special Interest Group
	TLV	Type-Length-Value
	TV	Television
	UK	United Kingdom
Was	hington University in St.	Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

Acronyms (Cont)

ULE Ultra Low Energy □ US United States □ VC Venture Capital □ WAN Wide Area Network □ WiFi Wireless Fidelity

□ XML eXtensible Markup Language

□ ZB Ziga-Byte

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

11-37

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

tps://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyvg93u

Video Podcasts of Prof. Raj Jain's Lectures,

tps://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

11-39

