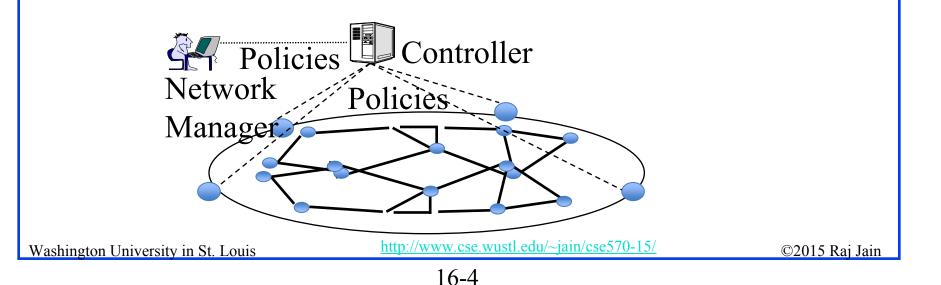


- 1. What is SDN?
- 2. SDN Controllers
- 3. Alternative APIs: XMPP, PCE, ForCES, ALTO
- 4. RESTful APIs and OSGi Framework

Note: This is the second module of three modules on OpenFlow, SDN and NFV in this course.


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Three Features that Define SDN

- 1. Abstract the Hardware: No dependence on physical infrastructure. Software API.
- 2. **Programmable**: Shift away from static manual operation to fully configurable and dynamic
- 3. Centralized Control of Policies: Policy delegation and management

What = Why We need SDN?

- **1. Virtualization**: Use network resource without worrying about where it is physically located, how much it is, how it is organized, etc. Abstraction \Rightarrow Virtualization.
- **2. Orchestration**: Should be able to control and manage thousands of devices with one command.
- **3. Programmable**: Should be able to change behavior on the fly.
- **4. Dynamic Scaling**: Should be able to change size, quantity Virtualization ⇒ Scaling
- **5.** Automation: To lower OpEx minimize manual involvement
 - Troubleshooting
 - Reduce downtime
 - Policy enforcement
 - Provisioning/Re-provisioning/Segmentation of resources
 - Add new workloads, sites, devices, and resources

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Why We need SDN? (Cont)

- 6. Visibility: Monitor resources, connectivity
- 7. Performance: Optimize network device utilization
 - Traffic engineering/Bandwidth management
 - Capacity optimization
 - Load balancing
 - ➢ High utilization
 - Fast failure handling
- **8. Multi-tenancy**: Tenants need complete control over their addresses, topology, and routing, security
- **9.** Service Integration: Load balancers, firewalls, Intrusion Detection Systems (IDS), provisioned on demand and placed appropriately on the traffic path

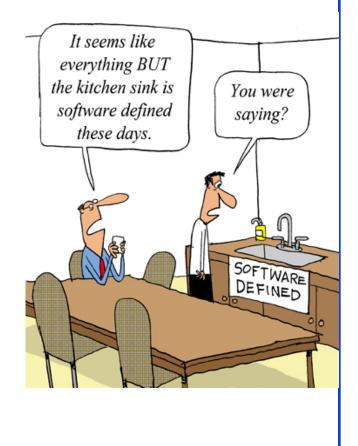
Why We need SDN? (Cont)

10. Openness: Full choice of "How" mechanisms

- \Rightarrow Modular plug-ins
- \Rightarrow Abstraction:
- > Abstract = Summary = Essence = General Idea \Rightarrow Hide the details.
- Also, abstract is opposite of concrete
 ⇒ Define tasks by APIs and not by how it should be done.
 E.g., send from A to B. Not OSPF.

Ref: http://www.networkworld.com/news/2013/110813-onug-sdn-275784.html

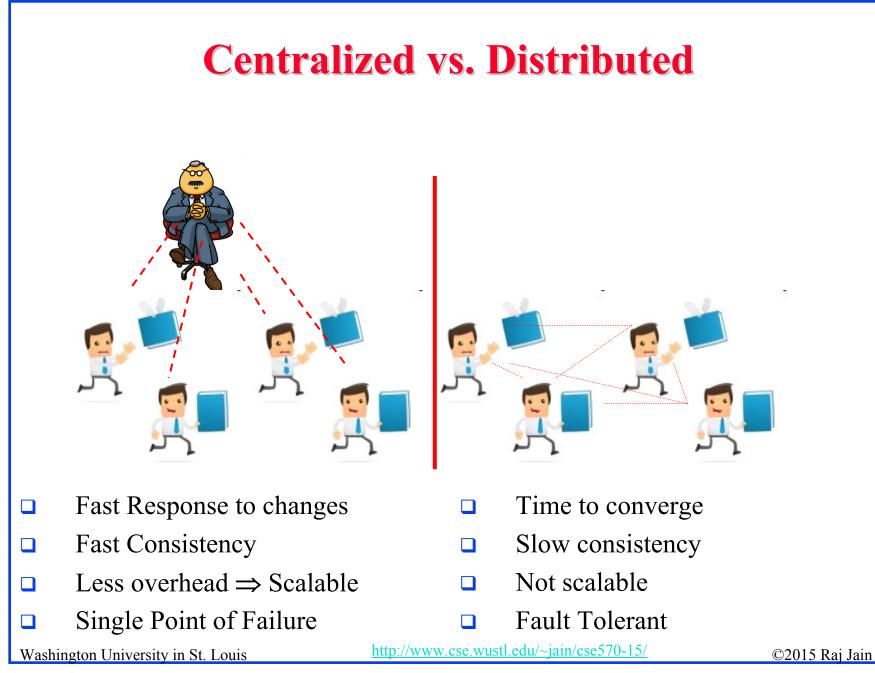
Ref: Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0," http://www.opendatacenteralliance.org/docs/Software_Defined_Networking_Master_Usage_Model_Rev1.0.pdf


Washington University in St. Louis

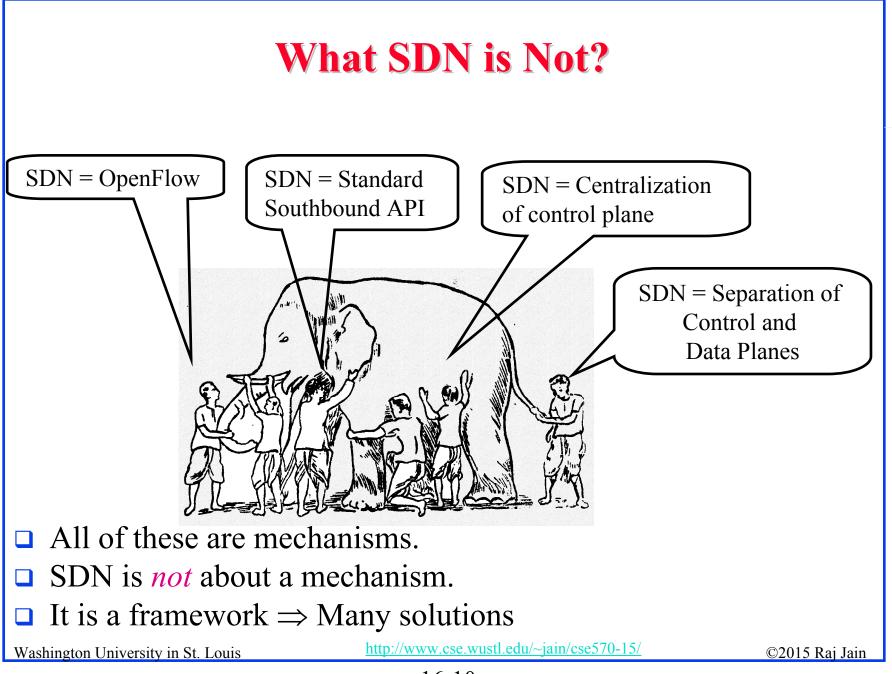
http://www.cse.wustl.edu/~jain/cse570-15/

Software Defined Anything (SDx)

- **T**sunami of software defined things
 - Software Defined Networking (SDN)
 - Software Defined Datacenter (SDDC)
 - Software Defined Storage (SDS)
 - Software Defined Compute (SDC)
 - Software Defined Infrastructure (SDI)



Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-15/

©2015 Raj Jain

16-8

16-9

Four Confusions About SDN

- 1. Policies vs. Control:
 - Control = All bits and messages not sent by the user In IP, control includes all header bits and all routing messages.
- 2. Separation of Control Plane: Elements have only data plane and have no brains
- 3. SDN vs. OpenFlow: OpenFlow is the father of SDN but not SDN.
- 4. Need OpenFlow:
 - > OpenFlow is micro-management.
 - > It is not scalable.
 - > For large infrastructure, need scalable solutions.

http://www.cse.wustl.edu/~jain/cse570-15/

Separation vs. Centralization

Separation of Control Plane

Centralization of Policies

Micromanagement is not scalable

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Current SDN Debate: What vs. How?

- SDN is easy if control is centralized but not necessary. Distributed/hierarchical solutions may be required for failsafe operation.
- Complete removal of control plane may be harmful.
 Exact division of control plane between centralized controller and distributed forwarders is yet to be worked out

Current SDN Debate: What vs. How? (Cont)

- 3. SDN is easy with a standard southbound protocol like OpenFlow but one protocol may not work/scale in all cases
 - 1. Diversity of protocols is a fact of life.
 - 2. There are no standard operating systems, processors, routers, or Ethernet switches.
- 4. If industry finds an easier way to solve the same problems by another method, that method may win. E.g., ATM vs. MPLS.

Flavors of SDN

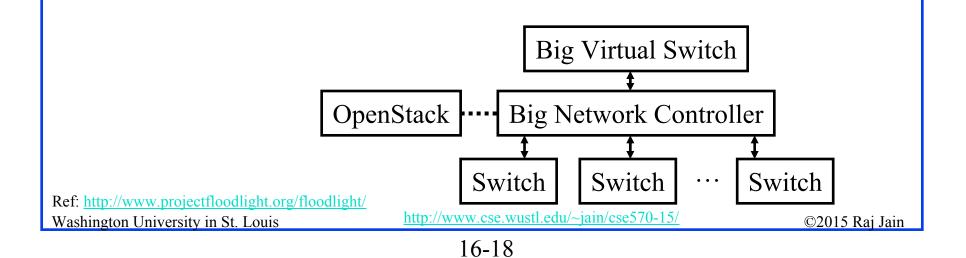
- 1. OpenDaylight: Multi-Protocol Southbound
- 2. Bare Metal Switches + Network Operating System
 - a. Switches from Dell, Edgecore, HP, Penguin, QCT, Agema, Supermicro
 - b. Open Network Install Environment (ONIE)
 - Network operating system: Alcatel-Lucent, Arista, Big Switch, Broadcom, Brocade, Cisco, Cumulus, Dell, Ericsson, Extreme, HP, Juniper, OCP, Pica8, Pluribus
- 3. Network Virtualization/Overlay: VMWare's NSX
- 4. ONF SDN: OpenFlow southbound

All provide: Abstraction, Programmability, and Centralization

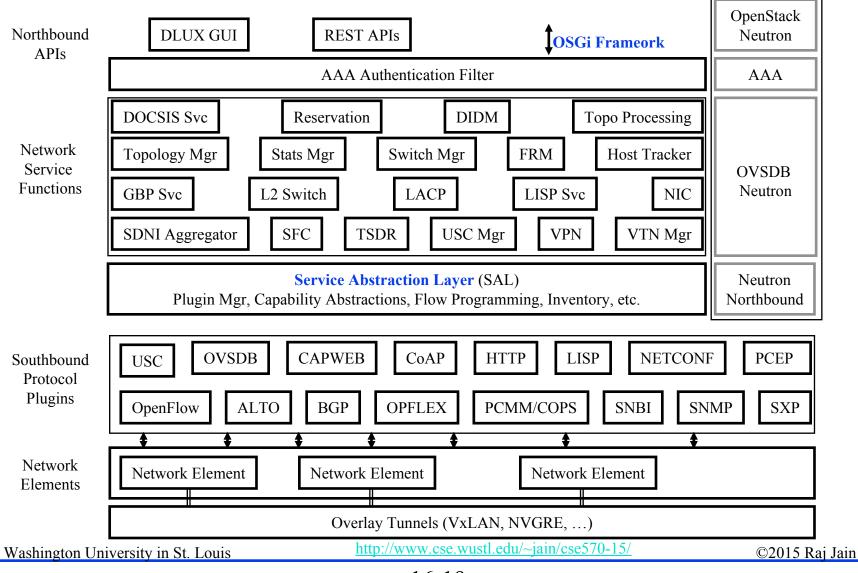
Ref: http://cumulusnetworks.com/support/linux-hardware-compatibility-list/, http://onie.org/

Source: Alan J Weissberger Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/


		ONOS		
ONOS				
Open Network Operating System: Distributed OpenFlow OS for a large WAN				
 8-10 instances in a cluster. Each Instance responsible for a part of a network 				
	Control Application	Control Application	Control Application	
	Distributed Network	Graph/State (Cassandi	ra in memory DHT)	
	Distri	buted Registry (Zooke	eeper)	
Instances (Floodligh	t) OpenFlow Controller	OpenFlow Controller	OpenFlow Controller	
Forwarding				
Ref: http://onos Washington Uni	project.org/ iversity in St. Louis	http://www.cse.wustl.edu/~jain/cse	<u>570-15/</u> ©2015 Raj Jain	

16-16


Floodlight Java based OpenFlow controller based on Beacon			
runs within a JVM. Developers from Big Switch Networks			
Indigo: Software to make switch hardware OpenFlow compatible			
Floodlight is the con Switch Networks	re of Big Switch Controller from Big Circuit Pusher Plugin Plugin Northbound REST API Floodlight Controller Floodlight Controller OpenFlow Hypervisor Switches Switches		
Ref: S. Azodolmolky, "Software Defined Networking with OpenFlow," Packt Publishing, October 2013, 152 pp.,			
ISBN:978-1-84969-872-6 (Safari Book) Washington University in St. Louis	http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain		
16-17			

Floodlight (Cont)

- □ A number of real-world networking applications
 - Neutron plug-in for OpenStack cloud management system
 - Static Flow Pusher: Allows users to manually insert flows
 - Circuit Pusher: Creates permanent entries on all switches along the path
 - Firewall: Enforces access control list (ACL) rules on packets
 - Big Virtual Switch: Automates network provisioning for a large scale data centers. Includes provisioning, multi-tenant partitioning

OpenDaylight: Multi-Protocol SDN

OpenDaylight SDN Controller Platform (OSCP)

- Multi-company collaboration under Linux foundation
- Many projects including OpenDaylight Controller
- NO-OpenFlow (Not Only OpenFlow): Supports multiple southbound protocols via plug-ins including OpenFlow
- Dynamically linked in to a Service Abstraction Layer (SAL) Abstraction ⇒ SAL figures out how to fulfill the service requested by higher layers irrespective of the southbound protocol
- Modular design using OSGI framework
- A rich set of North-bound APIs via RESTful services for loosely coupled applications and OSGI services for co-located applications using the same address space

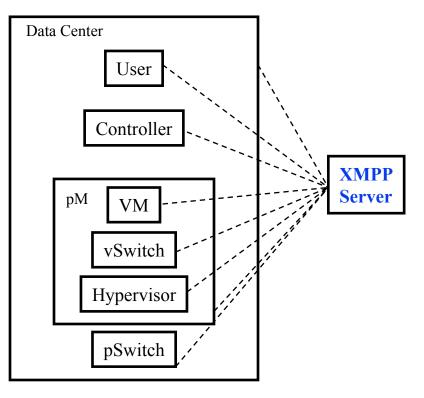
Ref: <u>https://wiki.opendaylight.org/view/Main_Page</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Examples Alternative APIs

- □ Southbound APIs: XMPP (Juniper), OnePK (Cisco)
- □ Northbound APIs: I2RS, I2AEX, ALTO,
- Overlay: VxLAN, TRILL, LISP, STT, NVO3, PWE3, L2VPN, L3VPN
- □ Configuration API: NETCONF
- □ Controller: PCE, ForCES

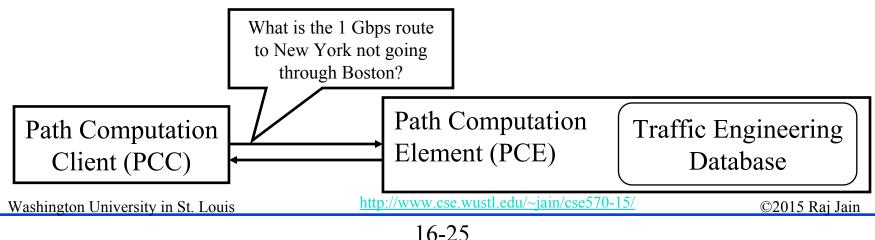

Ref: T. Nadeau and K. Gray, "SDN," O'Reilly, 2013, 384 pp, ISBN:978-1-449-34230-2 (Safari Book)Washington University in St. Louishttp://www.cse.wustl.edu/~jain/cse570-15/

V	XMPP		
XMPP Extens	sible Messaging and Presence Protocol		
	$\Box \text{ Extensible} \Rightarrow \text{Using XML}$		
Similar to SMTP email protocol but for near real-time communication			
Each client has an ID, e.g., john@wustl.edu/mobile (John's mobile phone)			
□ Client	sets up a connection with the server \Rightarrow Client is online		
Presence: Server maintains contact addresses and may let other contacts know that this client is now on-line			
Messaging: When a client sends a "chat" message to another clients, it is forwarded to these other clients			
	ges are " <i>pushed</i> " (\Rightarrow real-time) as opposed to " <i>polled</i> " as TP/POP emails.		
	Server		
	Client Client Client		
Ref: P. Saint-Andre, et al., "XMPP: The Definitive Guide," O'Reilly, 2009, 320 pp., ISBN:9780596521264 (Safari Book) Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain			
	16-22		

XMPP (Cont) XMPP □ XMPP is IETF standardization of Jabber protocol □ RFC 6121 defines XMPP using TCP connections. But HTTP is often used as transport to navigate firewalls □ All messages are XML encoded \Rightarrow Not efficient for binary file transfers \Rightarrow Out-of-band binary channels are often used with XMPP. □ A number of open-source implementations are available □ Variations of it are widely used in most instant messaging programs including Google, Skype, Facebook, ..., many games □ Used in IoT and data centers for management. Network devices have XMPP clients that respond to XMPP messages containing CLI management requests \Rightarrow You can manage your network using any other XMPP client, e.g., your mobile phone □ Arista switches can be managed by XMPP, Juniper uses XMPP as a southbound protocol for SDN Ref: http://en.wikipedia.org/wiki/XMPP http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis ©2015 Raj Jain

XMPP in Data Centers

Everything is an XMPP entity.It has its own contact list and authorizations.



 Ref: https://github.com/ArchipelProject/Archipel/wiki/Architecture-%26-Concepts

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse570-15/

Path Computation Element (PCE)

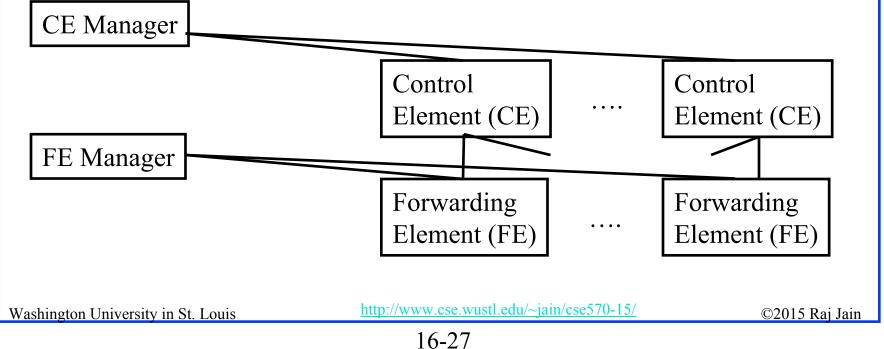
- MPLS and GMPLS require originating routers to find paths that satisfy multiple constraints including not using any backup routers and having a given bandwidth etc.
- □ This may require more computer power or network knowledge than a router may have.
- □ IETF PCE working group has developed a set of protocols that allow a Path computation client (PCC), i.e., router to get the path from path computation element (PCE)
- PCE may be centralized or may be distributed in many or every router.

PCE (Cont)

- PCE separates the route computation function from the forwarding function.
- Both functions may be resident in the same box or different boxes.
- □ 25+ RFCs documenting protocols for:
 - > PCE-to-PCC communication
 - > PCE-to-PCE communication (Multiple PCEs)
 - > PCE discovery

Ref: http://datatracker.ietf.org/wg/pce/

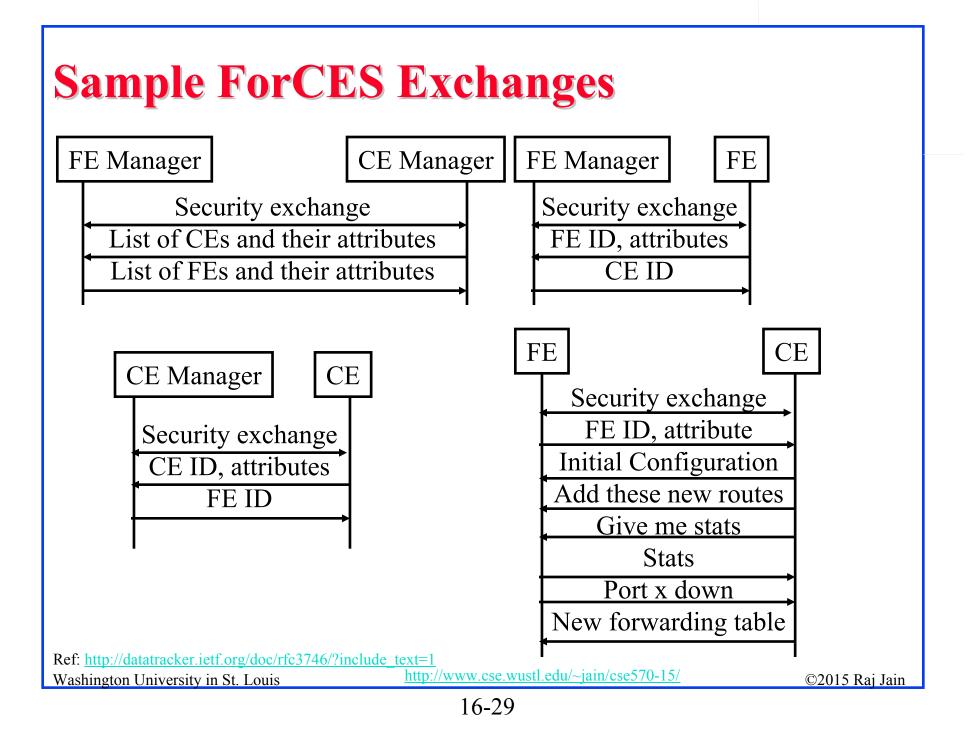
Ref: <u>http://en.wikipedia.org/wiki/Path_computation_element</u>


Washington University in St. Louis

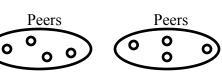
http://www.cse.wustl.edu/~jain/cse570-15/

Forwarding and Control Element

Separation (ForCES)


- □ IETF working group since July 2001
- Control Elements (CEs) prepare the routing table for use by forwarding elements (FEs).
- □ Each CE may interact with one or more FEs
- There may be many CEs and FEs managed by a CE manager and a FE manager

ForCES (Cont)


- Idea of control and data plane separation was used in BSD 4.4 *routing sockets* in early 1990s. It allowed routing tables to be controlled by a simple command line or by a route daemon.
- □ ForCES protocol supports exchange of:
 - > Port type, link speed, IP address
 - > IPv4/IPv6 unicast/multicast forwarding
 - > QoS including metering, policing, shaping, and queueing
 - Packet classification
 - > High-touch functions, e.g., Network Address Translation (NAT), Application-level Gateways (ALG)
 - Encryptions to be applied to packets
 - > Measurement and reporting of per-flow traffic information

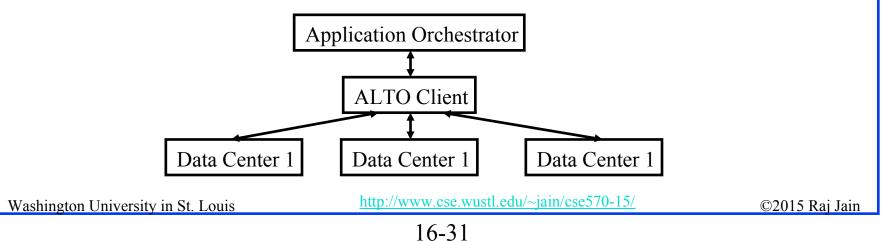
http://www.cse.wustl.edu/~jain/cse570-15/

Application Layer Traffic Optimization (ALTO)

□ IETF working group to optimize P2P traffic \Rightarrow Better to get files from nearby peers

- Provide guidance in peer selection
- □ ALTO Server: Has knowledge of distributed resources
- ALTO Client: Requests information from servers about the appropriate peers
- □ Ratio Criteria: Topological distance, traffic charges, ...
- ALTO Server could get information from providers or from nodes about their characteristics, e.g., flat-rate or volume based charging
- □ A client may get the list of potential peers and send it to the server, which can return a ordered list
- □ Also need a protocol for ALTO server discovery

 Ref: J. Seedorf and E. Berger, "ALTO Problem Statement," http://datatracker.ietf.org/doc/rfc5693/?include_text=1


 Ref: Y. Lee, et al., "ALTO Extensions for collecting Data Center Resource Information,"

 http://datatracker.ietf.org/doc/draft-lee-alto-ext-dc-resource/?include_text=1

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse570-15/

ALTO Extension

- □ Now being extended to locate resources in data centers
- □ Need to be able to express
 - resource (memory, storage, CPU, network) availability
 - Cost of these resources
 - Constraints on resources, e.g., bandwidth
 - Constraints on structure, e.g., Power consumption
- □ ALTO client gets the info from various providers
- □ Issue of privacy of resource and cost info for the provider

OpenDaylight Tools

- 1. Applications: Provides Virtual Network Segments (VNS) for each tenant
 - 1. OpenDaylight Network Virtualization (ONV):
 - 2. OpenDaylight Virtual Tenant Network (VTN)
- 2. Services:
 - 1. Defense4All: Security
- 3. Northbound APIs:
 - 1. **REST**
 - 2. **Dlux**: Northbound API using AngularJS, an extension of HTML by Google for dynamic views

OpenDaylight Tools (Cont)

4. Southbound APIs:

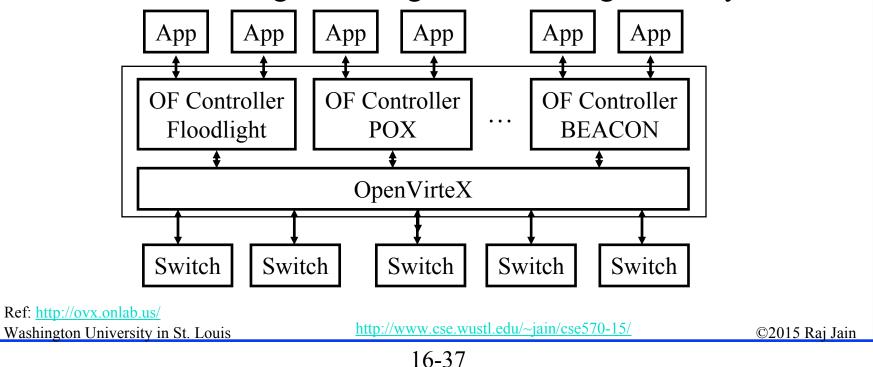
- 1. OpenFlow Plug-in + Protocol Library (V1.0, V1.1,...)
- 2. Locator ID Separation Protocol (LISP) Mapping Service
- 3. SNMP4SDN
- 4. BGP Link State Path Control Element Protocol
- 5. Overlay:
 - Open Distributed Overlay Virtual Ethernet (DOVE): Like VxLAN but does not use IP Multicast
- 6. Configuration:
 - 1. OpenDaylight YANG Tools: NETCONF
 - 2. Open vSwitch Database (OVSDB) Integration
 - 3. Affinity Metadata Service

http://www.cse.wustl.edu/~jain/cse570-15/

Affinity Metadata Service

- API to create an abstract topology and implementation independent description of infrastructure needs and behaviors of network workloads
- Allows intent to be specified in application and service terms independent of where and how the workloads attach to the network.
- □ SDN controllers and application can use "affinity" information to *automatically* provision the VMs and network for the user
- Users don't need to know about bridges, routers, VLANs, and tunnels

Key SDN Related Software


- □ Mininet (Current)
- OpenVirteX
- Ryu (current)
- **T**rema
- □ RouteFlow (Last commit March 19, 2014)
- Luxoft Twister

Mininet

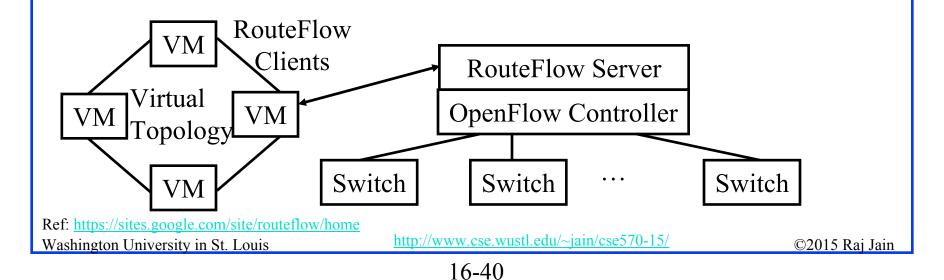
- □ Widely used open source network emulation environment.
- Can simulate a number of end-hosts, switches, routers, links on a Linux
- □ Used for rapid prototyping of software define networks
- □ Built-in Open vSwitch, and a OpenFlow capable switch
- □ Command line launcher and Python API for creating networks of varying sizes, e.g., *mn* –*topo tree*,*depth*=2,*fanout*=3
- □ Useful diagnositc commands like iperf, ping, and other commands in a host, e.g., *mininet*> *h11 ifconfig* –*a*
- Mininet code for several popular commercial switches are available.

OpenVirteX (OVX)

- Transparent Proxy between OpenFlow switches and multiple
 OpenFlow Controllers. Slices defined by header fields.
- □ Creates network slices that can be managed by different controllers ⇒ Isolates slices from each other
- □ All control traffic goes through $OVX \Rightarrow$ Slight latency

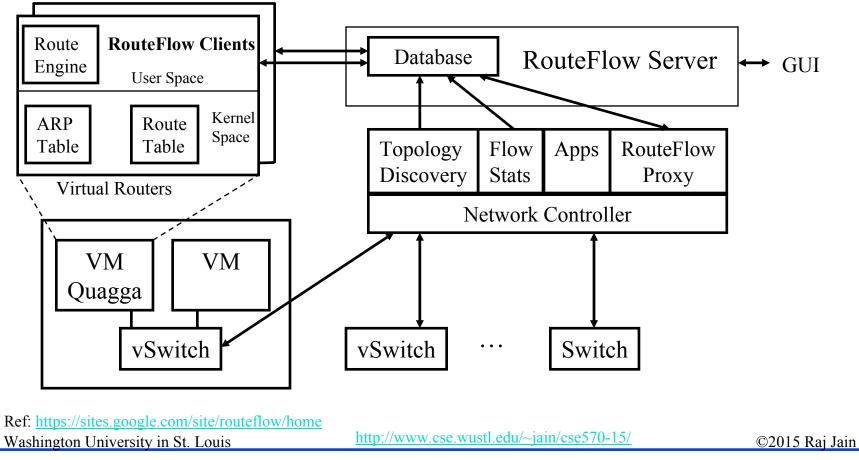
Ryu

- Component-based framework that integrates with OpenStack and supports OpenFlow
- Provides software component with well defined API for network management and control applications
- Supports various versions of OpenFlow, OF-Config, Nicira extensions
- Developed by NTT laboratories
- Can easily setup a multi-node OpenStack environment using pre-configured Ryu VM image file


Trema

- Full-stack easy-to-use framework for developing OpenFlow controllers in Ruby and C
- □ Open source. Developed by NEC Research Lab.
- Modular extensible architecture
- □ Integrated development environment for testing and debugging

Ref: <u>http://github.com/trema/</u> Ref: <u>http://trema.github.com/trema/</u> Washington University in St. Louis


RouteFlow

- Provides virtualized IP routing services over OpenFlow enabled hardware
- IP routing engines (e.g., Quagga) in the networking devices generate the forwarding information base (FIB) into the Linux IP tables using OSPF, BGP, etc.
- RouteFlow Client processes collect the IP and ARP tables and translate into OpenFlow tuples that are installed in the OpenFlow devices in the forwarding plane

RouteFlow (Cont)

Key components: RouteFlow Client, RouteFlow Server, and RouteFlow Proxy

Luxoft Twister

- Test automation framework to manage and drive test cases written in shell scripting languages.
- □ Supports TCL, Python, and Perl
- □ Web-based user interface
- Remote access capability

Open Source Routing Software

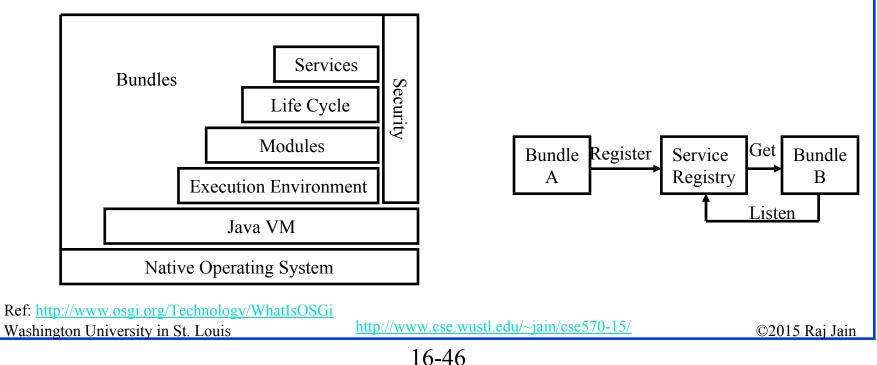
Bird Internet Routing Daemon (BIRD):

- > TCP/IP routing daemon for Unix-like systems
- > Developed at Charles University, Prague
- > Provides BGP, RIP, OSPF for IPv4 and IPv6
- > Included in many Linux distributions
- > Used in several internet exchanges as a route server and has replaced Quagga because of its scalability issues
- **Quagga**: Includes OSPF, RIP, BGP, IS-IS on Unix-like OSs
- □ eXensible Open Router Platform (XORP):
 - > Designed at ICSI in Berkeley
 - Supports OSPF, BGP, RIP, PIM, IGMP, OLSR
 - Generally replace by Quagga

RESTful APIs

- □ Software architecture style developed by W3C.
- □ Introduced by Roy Fielding in his PhD thesis.
- □ WWW uses this sytle. Very popular in other applications.
- Goals: Scalability, Generality, Independence, and allow intermediate components
- Client-Server Model: Clients and servers can be developed undependably.
- Server is stateless
- □ Responses can be cached for the specified time
- Intermediate Servers (Proxies) can respond. End point is not critical.

REST (Cont)


- Create, Read, Update, Delete (CRUD) Operations
- Uniform Interface: GET (Read), POST (Insert), PUT (write), DELETE
- □ Resources identified by global identifiers, e.g., URI in Web.
- Get http://<fqdn-or-ip-address>/rest/v1/model/<datatype>/<optional-id>?<optional-query-params> E.g., GET http://odcp.org/rest/v1/model/controller-node
- Data Types: Controller node, Firewall rule, Topology configuration, Switch, Port, link, flow entry, VLAN, ...
- Data types can include commercial entities, such as, Big Virtual Switch from Big Switch Networks, vCenter from VMware, ...
- □ If optional-id and query parameters are omitted, the returned text includes all of the items of the given data type.

 Ref: http://en.wikipedia.org/wiki/Representational_state_transfer

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse570-15/

OSGi Framework

- Initially, Open Services Gateway initiative
- A set of specifications for dynamic application composition using reusable Java components called bundles
- Bundles publish their services with OSGi services registry and can find/use services of other bundles

OSGi (Cont)

- Bundles can be installed, started, stopped, updated or uninstalled using a lifecycle API
- □ Modules defines how a bundle can import/export code
- Security layer handles security
- Execution environment defines what methods and classes are available in a specific platform
- ❑ A bundle can get a service or it can listen for a service to appear or disappear.
- Each service has properties that allow others to select among multiple bundles offering the same service
- Services are dynamic. A bundle can decide to withdraw its service. Other bundles should stop using it

 \Rightarrow Bundles can be installed and uninstalled on the fly.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-

- 1. SDN = Abstraction+Programmability+Centralization
- 2. OpenFlow originated SDN but now many different southbound and northbound APIs, intermediate services and tools are being discussed and implemented by the industry, e.g., XMPP, ForCES, PCE, ALTO
- 3. OpenDaylight, ONOS, and FloodLight are SDN Controllers. Differ on how much open.
- 4. Mininet for network simulation
- 5. REST=HTTP APIs OSGI framework for modularity

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Reading List

- T. Nadeau and K. Gray, "SDN," O'Reilly, 2013, 384 pp, ISBN:978-1-449-34230-2 (Safari book)
- □ V. Josyula, M. Orr, and G. Page, "Cloud Computing: Automating the Virtualized Data Center," Cisco Press, 2012, 392 pp., ISBN: 1587204347 (Safari Book).
- □ J. Seedorf and E. Berger, "ALTO Problem Statement," <u>http://datatracker.ietf.org/doc/rfc5693/?include_text=1</u>
- □ Y. Lee, et al., "ALTO Extensions for collecting Data Center Resource Information," <u>http://datatracker.ietf.org/doc/draft-lee-alto-ext-dc-resource/?include_text=1</u>
- B. Martinussen (Cisco), "Introduction to Software Defined Networks (SDN)," April 2013, <u>http://www.cisco.com/web/europe/ciscoconnect2013/pdf/DC_3_SDN.pdf</u>
- □ <u>http://www.osgi.org/Technology/WhatIsOSGi</u>
- □ <u>http://www.sdncentral.com/sdn-use-cases</u> /
- https://wiki.opendaylight.org/view/OpenDaylight_SDN_Controller_Platform_%280 SCP%29:Proposal
- □ <u>http://datatracker.ietf.org/wg/pce/</u>
- □ <u>https://wiki.opendaylight.org/view/Main_Page</u>

Washington University in St. Louis

Wikipedia Links

- <u>http://en.wikipedia.org/wiki/Software-defined_networking</u>
- <u>http://en.wikipedia.org/wiki/Representational_state_transfer</u>
- □ <u>http://en.wikipedia.org/wiki/OSGI</u>
- □ <u>http://en.wikipedia.org/wiki/XMPP</u>
- <u>http://en.wikipedia.org/wiki/Path_computation_element</u>

References

- P. Saint-Andre, et al., "XMPP: The Definitive Guide," O'Reilly, 2009, 320 pp., ISBN:9780596521264 (Safari Book)
- OpenDaylight Components and Tools:
 - <u>https://wiki.opendaylight.org/view/Open_DOVE:Proposal</u>
 - https://wiki.opendaylight.org/view/OpenDaylight_Network_Virtualizati on_%28ONV%29:Main
 - https://wiki.opendaylight.org/view/OpenDaylight_OpenFlow_Plugin:Ov erview
 - <u>https://wiki.opendaylight.org/view/OpenDaylight_Virtual_Tenant_Netw</u> <u>ork %28VTN%29:Overview</u>
 - <u>https://wiki.opendaylight.org/view/Openflow_Protocol_Library:Main</u>
 - <u>https://wiki.opendaylight.org/view/OVSDB_Integration:Design</u>
 - <u>https://wiki.opendaylight.org/view/Project_Proposals:Affinity_Metadata</u>
 <u>Service</u>
 - <u>https://wiki.opendaylight.org/view/Project_Proposals:BGP_and_PCEP</u>
 - <u>https://wiki.opendaylight.org/view/Project_Proposals:Defense4All</u>
 - <u>https://wiki.opendaylight.org/view/Project_Proposals:Dlux</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

References (Cont)

- <u>https://wiki.opendaylight.org/view/Project_Proposals:LispMappingServi</u> <u>ce</u>
- <u>https://wiki.opendaylight.org/view/Project_Proposals:SNMP4SDN</u>
- <u>https://wiki.opendaylight.org/view/YANG_Tools:Main</u>
- □ <u>https://www.opennetworking.org/index.php?option=com_content&view=art</u> <u>icle&id=686&Itemid=272&lang=en</u>
- Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0,"

http://www.opendatacenteralliance.org/docs/Software_Defined_Networking Master_Usage_Model_Rev1.0.pdf

Acronyms

- □ ACI Application Policy Infrastructure
- □ ACL Access Control List
- □ AEX Application Information Exposure
- □ ALG Application Level Gateway
- ALTO Application Layer Traffic Optimization
- □ ANDSF Access Network Discovery and Selection Function
- □ API Application Programming Interface
- □ APIC Application Policy Infrastructure Controller
- ARP Address REsolution Protocol
- □ ATIS Association for Telecom Industry Solutions
- □ ATM Asynchronous Transfer Mode
- □ AVNP Active Virtual Network Management Protocol
- BGP Border Gateway Protocol
- BNC Big Switch Network Controller
- BSD Berkeley Software Distribution
- **BUM** Broadcast, Unknown, and Multicast

Washington University in St. Louis

- CDN Content Distribution Network
- CDNI Content Distribution Network Interconnection
- □ CE Control Element
- □ CLI Command Line Interface
- □ CMS Content Management System
- □ CPU Central Processing Unit
- CRUD Create, Read, Update, Delete
- □ CSP Cloud Service Provider
- DHCP Dynamic Host Control Protocol
- DNS Domain Name System
- DOVE Distributed Overlay Virtual Ethernet
- DVS Distributed Virtual Switch
- □ EID Endpoint Identifier
 - ETSI European Telecommunications Standards Institute
- □ FCAPS Faults, configuration, accounting, performance , and security
- **FE** Forwarding Element

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

- **FE** Forwarding Element
- ForCES Forwarding and Control Element Separation
- GMPLS Generalized Multi-Protocol Label Switching
- GUI Graphical User Interface
- □ HTML Hypertext Markup Language
- □ HTTP Hypertext Tranfer Protocol
- □ I2AEX Infrastructure to Application Information Exposure
- □ IaaS Infrastructure as a Service
- □ ID Identifier
- □ IDS Intrusion Detection System
- □ IEEE Institution of Electrical and Electronic Engineers
- □ IETF Internet Engineering Task Force
- □ IGP Interior Gateway Protocol
- □ IoT Internet of Things
- □ IP Internet Protocol
- □ IPv4 Internet Protcol version 4

Washington University in St. Louis

- □ IPv6 Internet Protcol version 6
- □ IRTF Internet Research Taskforce
- □ IS-IS Intermediate System to Intermediate System
- ISO International Standards Organization
- □ LAN Local Area Network
- LISP Locator-ID Separation Protocol
- LS Link State
- MAC Media Access Control
- MPLS Multi-protocol Label Switching
- NAT Network Address Translation
- NFV Network Function Virtualization
- □ NTP Network Time Protocol
- NVGRE Network Virtualization using Generic Routing Encapsulation
- NVO3 Network Virtualization over L3
 - NVP Network Virtualization Platform

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

- □ OF OpenFlow
- OnePK Open Network Environment Platform Kit
- ONF Open Networking Forum
- ONV OpenDaylight Network Virtualization
- OpEx Operational Expense
- OS Operating System
- OSCP OpenDaylight SDN Controller Platform
- OSGi Open Services Gateway Initiative
- OSPF Open Shortest Path First
- OVS Open Virtual Switch
- OVSDB Open Virtual Switch Database
- PCC Path Computation Client
- **D** PCE Path Computation Element
- PCEP Path Computation Element Protocol
- POP Post Office Protocol
- PWE3 Pseudowire Emulation Edge to Edge

Washington University in St. Louis

- QoS Quality of Service
- **REST** Representational State Transfer
- **G** RFC Request for Comments
- □ RLOC Routing Locator
- RLOC Routing Locator
- RS Routing System
- □ SAL Service Abstraction Layer
- □ SDN Software Defined Networking
- □ SMTP Simple Mail Transfer Protocol
- SNMP Simple Network Management Protocol
- □ SSH Secure Socket Host
- **Given State State**
- **TCP** Transmission Control Protocol
- **TE** Traffic Engineering
- **TIA** Telecom Industry Association
- **TRILL** Transparent Interconnection of Lots of Links

Washington University in St. Louis

- □ URI Uniform Resource Identifier
- □ vBridge Virtual Bridge
- VIRL Virtual Internet Routing Lab
- VLAN Virtual Local Area Network
- □ VM Virtual Machine
- VNS Virtual Network Segement
- □ VPN Virtual Private Network
- □ vTep Virtual Tunnel End Point
- □ VTN Virtual Tenant Network
- VxLAN Virtual Extensible Local Area Network
- □ WAN Wide Area Network
- Image: XMLExtensible Markup Language
- XMPP Extensible Messaging and Presence Protocol

Washington University in St. Louis

SDN Related Organizations and Projects

- Open Networking Foundation (ONF): www.opennetworking.org
- □ Telecom Industry Association (TIA): <u>www.tiaonline.org</u>
- European Telecommunications Standards Institute (ETSI): www.etsi.org/
- Association for Telecom Industry Solutions (ATIS): <u>www.atis.org/topsc/sdn.asp</u>
- □ Internet Engineering Task Force (IETF): <u>www.ietf.org</u>
- Open Data Center Alliance, <u>http://www.opendatacenteralliance.org</u>
- OpenStack Quantum: <u>https://wiki.openstack.org/wiki/Quantum</u>
- OpenDaylight: <u>www.opendaylight.org</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

SDN Web Sites

- □ SDN Central, <u>http://www.sdncentral.com</u>
- SDN Open Source Projects, <u>http://www.sdncentral.com/comprehensive-list-of-open-source-sdn-projects/</u>
- SDN Products and Services, <u>http://www.sdncentral.com/announced-sdn-products/</u>
- □ SDN Reading List, <u>http://www.nec-labs.com/~lume/sdn-</u> reading-list.html
- HotSDN 2012, <u>http://yuba.stanford.edu/~casado/of-sw.html</u> (Papers downloadable)
- European Workshop on SDN, <u>http://ewsdn.eu/ewsdn12.html</u> (Papers downloadable)