Introduction to OpenFlow

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-15/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

- 1. Planes of Networking
- 2. OpenFlow
- 3. OpenFlow Operation
- 4. OpenFlow Switches including Open vSwitch
- 5. OpenFlow Evolution
- 6. Current Limitations and Issues

Note: This is the first module of four modules on OpenFlow, OpenFlow Controllers, SDN and NFV in this course.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

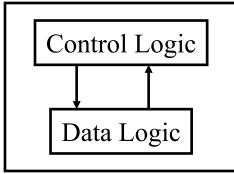
Planes of Networking

- Data Plane: All activities involving as well as resulting from data packets sent by the end user, e.g.,
 - > Forwarding
 - > Fragmentation and reassembly
 - > Replication for multicasting
- □ Control Plane: All activities that are <u>necessary</u> to perform data plane activities but do not involve end-user data packets
 - > Making routing tables
 - > Setting packet handling policies (e.g., security)
 - > Base station beacons announcing availability of services

Ref: Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0,"

http://www.opendatacenteralliance.org/docs/Software Defined Networking Master Usage Model Rev1.0.pdf

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-15/

Planes of Networking (Cont)

- Management Plane: All activities related to provisioning and monitoring of the networks
 - > Fault, Configuration, Accounting, Performance and Security (FCAPS).
 - Instantiate new devices and protocols (Turn devices on/off)
 - \rightarrow Optional \Rightarrow May be handled manually for small networks.
- Services Plane: Middlebox services to improve performance or security, e.g.,
 - Load Balancers, Proxy Service, Intrusion Detection, Firewalls, SSL Off-loaders
 - \rightarrow Optional \Rightarrow Not required for small networks

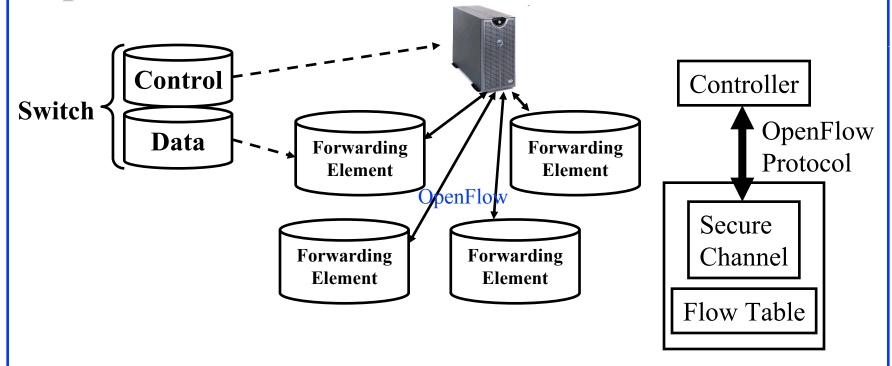
Data vs. Control Logic

- □ Data plane runs at line rate,
 e.g., 100 Gbps for 100 Gbps Ethernet ⇒ Fast Path
 ⇒ Typically implemented using special hardware,
 e.g., Ternary Content Addressable Memories (TCAMs)
- □ Some exceptional data plane activities are handled by the CPU in the switch ⇒ Slow path
 e.g., Broadcast, Unknown, and Multicast (BUM) traffic
- □ All control activities are generally handled by CPU

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

OpenFlow: Key Ideas


- 1. Separation of control and data planes
- 2. Centralization of control
- 3. Flow based control

Ref: N. McKeown, et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, Vol. 38, No. 2, April 2008, pp. 69-74.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Separation of Control and Data Plane

- Control logic is moved to a controller
- Switches only have forwarding elements
- One expensive controller with a lot of cheap switches
- OpenFlow is the protocol to send/receive forwarding rules from controller to switches

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

OpenFlow V1.0

□ On packet arrival, match the header fields with flow entries in a table, if any entry matches, update the counters indicated in that entry and perform indicated actions

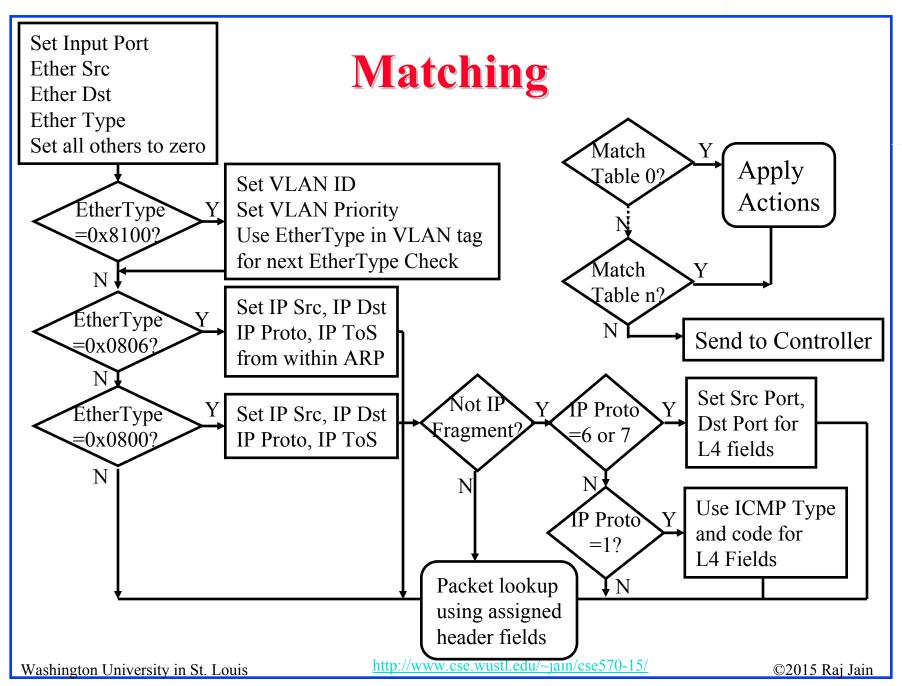
Flow Table: Header Fields Counters Actions
Header Fields Counters Actions
Header Fields Counters Actions
Header Fields Counters Actions

				-							
	Ingress	Ether	Ether	VLAN	VLAN	IP	IP	IP	IP	Src L4	Dst L4
ı	Port	Source	Dest	ID	Priority	Src	Dst	Proto	ToS	Port	Port

Ref: http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

Flow Table Example


Port	Src MAC	Dst MAC	VLAN ID	Priority	EtherType	Src IP	Dst IP	IP Proto		Src L4 Port ICMP Type	Dst L4 Port ICMP Code	Action	Counter
*	*	0A:C8:*	*	*	*	*	*	*	*	*	*	Port 1	102
*	*	*	*	*	*	*	192.168.*.*	*	*	*	*	Port 2	202
*	*	*	*	*	*	*	*	*	*	21	21	Drop	420
*	*	*	*	*	*	*	*	0x806	*	*	*	Local	444
*	*	*	*	*	*	*	*	0x1*	*	*	*	Controller	1

- □ Idle timeout: Remove entry if no packets received for this time
- □ Hard timeout: Remove entry after this time
- ☐ If both are set, the entry is removed if either one expires.

Ref: S. Azodolmolky, "Software Defined Networking with OpenFlow," Packt Publishing, October 2013, 152 pp., ISBN:978-1-84969-872-6 (Safari Book)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Counters

Per Table	Per Flow	Per Port	Per Queue	
Active Entries	Received Packets	Received Packets	Transmit Packets	
Packet Lookups	Received Bytes	Transmitted Packets	Transmit Bytes	
Packet Matches	Duration (Secs)	Received Bytes	Transmit overrun	
			errors	
	Duration (nanosecs)	Transmitted Bytes		
		Receive Drops		
		Transmit Drops		
		Receive Errors		
		Transmit Errors		
		Receive Frame		
		Alignment Errors		
		Receive Overrun		
		erorrs		
		Receive CRC		
		Errors		
		Collisions		

Washington University in St. Louis

 $\underline{http://www.cse.wustl.edu/\sim\!jain/cse570\text{-}15/}$

Actions

- □ Forward to Physical Port *i* or to *Virtual Port*:
 - > All: to all interfaces <u>except</u> incoming interface
 - > Controller: encapsulate and send to controller
 - > Local: send to its local networking stack
 - > Table: Perform actions in the flow table
 - > In port: Send back to input port
 - > Normal: Forward using traditional Ethernet
 - > Flood: Send along minimum spanning tree except the incoming interface
- \square Enqueue: To a particular queue in the port \Rightarrow QoS
- Drop
- Modify Field: E.g., add/remove VLAN tags, ToS bits, Change TTL

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Actions (Cont)

- Masking allows matching only selected fields,
 e.g., Dest. IP, Dest. MAC, etc.
- If header matches an entry, corresponding actions are performed and counters are updated
- ☐ If no header match, the packet is queued and the header is sent to the controller, which sends a new rule. Subsequent packets of the flow are handled by this rule.
- Secure Channel: Between controller and the switch using TLS
- Modern switches already implement flow tables, typically using Ternary Content Addressable Memories (TCAMs)
- □ Controller can change the forwarding rules if a client moves
 - ⇒ Packets for mobile clients are forwarded correctly
- □ Controller can send flow table entries beforehand (**Proactive**) or Send on demand (**Reactive**). OpenFlow allows both models.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15

Open vSwitch

- Open Source Virtual Switch
- Nicira Concept
- Can Run as a stand alone hypervisor switch or as a distributed switch across multiple physical servers
- □ Default switch in XenServer 6.0, Xen Cloud Platform and supports Proxmox VE, VirtualBox, Xen KVM
- □ Integrated into many cloud management systems including OpenStack, openQRM, OpenNebula, and oVirt
- □ Distributed with Ubuntu, Debian, Fedora Linux. Also FreeBSD
- □ Intel has an accelerated version of Open vSwitch in its own Data Plane Development Kit (DPDK)

Ref: http://openvswitch.org/

Open vSwitch Features

- Inter-VM communication monitoring via:
 - NetFlow: Cisco protocol for sampling and collecting traffic statistics (RFC 3954)
 - > **sFlow**: Similar to NetFlow by sflow.org (RFC 3176)
 - > **Jflow**: Juniper's version of NetFlow
 - > NetStream: Huawei's version of NetFlow
 - > IPFIX: IP Flow Information Export Protocol (RFC 7011) IETF standard for NetFlow
 - > SPAN, RSPAN: Remote Switch Port Analyzer port mirroring by sending a copy of all packets to a monitor port
 - > **GRE-tunneled mirrors**: Monitoring device is remotely connected to the switch via a GRE tunnel

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

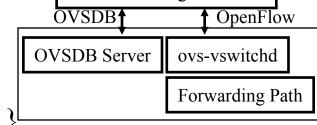
Open vSwitch Features (Cont)

- □ Link Aggregation Control Protocol (LACP)
- □ IEEE 802.1Q VLAN
- □ IEEE 802.1ag Connectivity Fault Management (CFM)
- Bidirectional Forwarding Detection (BFD) to detect link faults (RFC 5880)
- □ IEEE 802.1D-1998 Spanning Tree Protocol (STP)
- Per-VM traffic policing
- OpenFlow
- Multi-table forwarding pipeline
- □ IPv6
- □ GRE, VXLAN, IPSec tunneling
- Kernel and user-space forwarding engine options

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

OVSDB


- Open vSwitch Database Management Protocol (OVSDB)
- Monitoring capability using publish-subscribe mechanisms
- Stores both provisioning and operational state
- □ Java Script Object Notation (JSON) used for schema format and for JSON-RPC over TCP for wire protocol (RFC 4627)

<database-schema>

"name": <id>

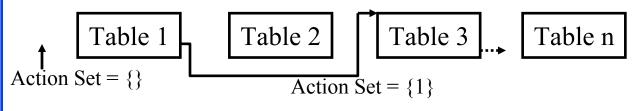
"version": <version>

"tables": {<id>: <table-schema>,...}

Control and Mgmt Cluster

- □ RPC Methods: List databases, Get Schema, Update, Lock, ...
- Open vSwitch project includes open source OVSDB client and server implementations

Ref: B. Pfaff and B. Davie, "The Open vSwitch Database Management Protocol," IETF draft, Oct 2013, http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-04


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

OpenFlow V1.1

- □ V1: Perform action on a match. Ethernet/IP only. Single Path Did not cover MPLS, Q-in-Q, ECMP, and efficient Multicast
- □ V1.1 Introduced *Table chaining, Group Tables, and added MPLS Label and MPLS traffic class to match fields.*
- □ **Table Chaining**: On a match, instruction may be
 - > Immediate actions: modify packet, update match fields and/or
 - > Update action set, and/or
 - > Send match data and action set to *Table n*,
 - \rightarrow Go to <u>Group Table</u> entry n

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Group Table

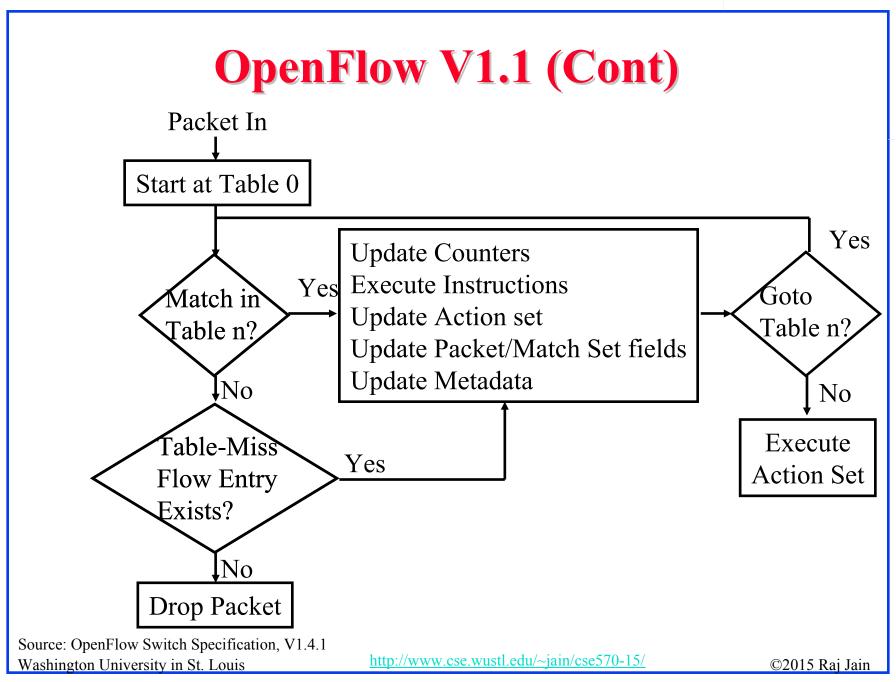
Controller

Secure

Channel

Flow Table

OpenFlow


Group

Table

Flow

Table

Action Set = $\{1,3,6,...\}$

OpenFlow V1.1 (Cont)

- On a miss, the instruction may be to send packet to controller or continue processing with the sequentially next table
- □ Group Tables: each entry has a variable number of buckets
 - > All: Execute each bucket. Used for Broadcast, Multicast.
 - > **Select**: Execute one *switch selected* bucket. Used for port mirroring. Selection may be done by hashing some fields.
 - > **Indirect**: Execute one *predefined* bucket.
 - ightharpoonup Fast Failover: Execute the first live bucket \Rightarrow Live port
- New Features supported:
 - > Multipath: A flow can be sent over one of several paths
 - > MPLS: multiple labels, traffic class, TTL, push/pop labels
 - > Q-in-Q: Multiple VLAN tags, push/pop VLAN headers
 - > Tunnels: via virtual ports

Ref: http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

OpenFlow V1.2

- 1. IPv6 Support: Matching fields include IPv6 source address, destination address, protocol number, traffic class. ICMPv6 type, ICMPv6 code, IPv6 neighbor discovery header fields, and IPv6 flow labels.
- 2. Extensible Matches: Type-Length-Value (TLV) structure. Previously the order and length of match fields was fixed.
- 3. Experimenter extensions through dedicated fields and code points assigned by ONF

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
Washington University in St. Louis

https://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain

OpenFlow 1.3

- □ IPv6 extension headers: Can check if Hop-by-hop, Router, Fragmentation, Destination options, Authentication, Encrypted Security Payload (ESP), unknown extension headers are present
- □ MPLS Bottom-of-Stack bit matching
- MAC-in-MAC encapsulation
- □ Tunnel ID meta data: Support for tunnels (VxLAN, ...)
- □ Per-Connection Event Filtering: Better filtering of connections to multiple controllers
- Many auxiliary connections to the controller allow to exploit parallelism
- Better capability negotiation: Requests can span multiple messages
- More general experimenter capabilities allowed
- ☐ A separate flow entry for table miss actions

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-spec-v1.3.0.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain

OpenFlow V1.3 (Cont)

- □ Cookies: A cookie field with policy identifier is added to messages containing new packets sent to the controller. This helps controller process the messages faster than if it had to search its entire database.
- □ **Duration**: Duration field has been added to most stats. Helps compute rates.
- □ Per-flow counters can be disabled to improve performance
- Per Flow Meters and meter bands
- Meter: Switch element that can measure and control the rate of packets/bytes.

 - > A meter may have multiple bands

http://www.cse.wustl.edu/~jain/cse570-15/

Washington University in St. Louis

©2015 Raj Jain

Band 1

→ Time

OpenFlow V1.3 (Cont)

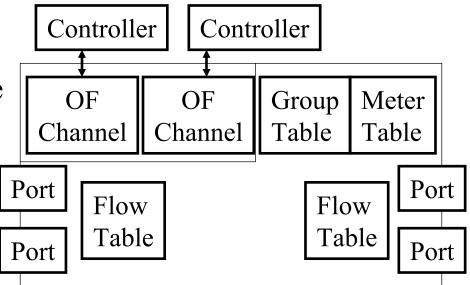
- > If on triggering a band the meter drops the packet, it is called rate limiter.
- > Other QoS and policing mechanisms can be designed using these meters
- > Per-Flow QoS: Meters are attached to a flow entry not to a queue or a port.
- > Multiple flow entries can all point to the same meter.

OpenFlow V1.4

- □ Optical ports: Configure and monitor transmit and receive frequencies of lasers and their power
- □ Improved Extensibility: Type-Length-Value (TLV) encodings at most places ⇒ Easy to add new features in future
- Extended Experimenter Extension API: Can easily add ports, tables, queues, instructions, actions, etc.
- More information when a packet is sent to controller, e.g., no match, invalid TTL, matching group bucket, matching action, ...
- Controllers can select a subset of flow tables for monitoring
- □ Switches can evict entries of lower importance if table full
- Switches can notify controller if table is getting full
- □ Atomic execution of a **bundle** of instructions

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain


OpenFlow V1.4.1

- 1. **Bundle**: Atomic Instruction Group
 - A group of instructions from the controller that are either all executed or all not executed
 - A bundle may be sent to many switches and then applied at approximately same time on commit request from the controller
- 2. Flow Table Monitoring: Synchronization in a multicontroller system
 - Notify a controller if a set of flow table entries is modified by another controller
- 3. Bug fixes

Ref: OpenFlow Switch Specification, V 1.4.1, March 26, 2015

OpenFlow V1.5

- 1. **Egress Tables**: actions to be done when exiting through a port (encapsulate or decapsulate a packet, tunnels)
- 2. Packet Type: Can now handle non-Ethernet packets, e.g., IP packets

3. TCP Flags Matching: Syn, Ack, and Fin may be used to detect beginning and end of a TCP connection

OpenFlow V1.5.1: Bug Fixes, March 2015

Ref: OpenFlow Switch Specification, V 1.5.0 December 19, 2014

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

OpenFlow Evolution Summary MPLS, Q-in-Q MAC-in-MAC Bug Fix Efficient multicast Multiple channels between switch **ECMP** \Rightarrow Multiple Tables and controller Sep 2013 Dec 2009 Feb 2011 Apr 2012 Sep 2012 Dec 2011 Jun 2012 V1.3.2 V1.0 V1.1 V1.2 V1.3 V1.3.1 V1.3.3 IANA IPv6 **TCP** Single Flow Table TLV matching Port Multiple controllers Bug Fix Ethernet/IPv4 6653 http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis ©2015 Raj Jain

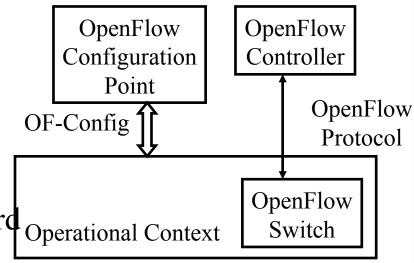
OpenFlow Evolution Summary (Cont) Minor **OTN Egress Tables** Experimenters Non-Ethernet Packets Changes TCP Flags Matching Bundles Table full Mar 2014 Mar 2015 Mar 2015 Oct 2013 Dec 2014 Mar 2015 V1.3.4 V1.3.5 V1.4 V1.4.1 V1.5.0 V1.5.1 **Instruction Bundles** Minor Flow Table Monitoring Multiple controllers Bug Fix Changes http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis ©2015 Raj Jain

Bootstrapping

- Switches require initial configuration: Switch IP address,
 Controller IP address, Default gateway
- Switches connect to the controller
- Switch provides configuration information about ports
- □ Controller installs a rule to forward LLDP packets to controller and then sends, one by one, LLDP packets to be sent out to port i (i=1, 2, ..., n) which are forwarded to respective neighbors. The neighbors send the packets back to controller.
- Controller determines the topology from LLDP packets
- LLDP is a one-way protocol to advertise the capabilities at fixed intervals.

Ref: S. Sharma, et al., "Automatic Bootstrapping of OpenFlow Networks," 19th IEEE Workshop on LANMAN, 2013, pp. 1-6, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6528283 (Available to subscribers only)

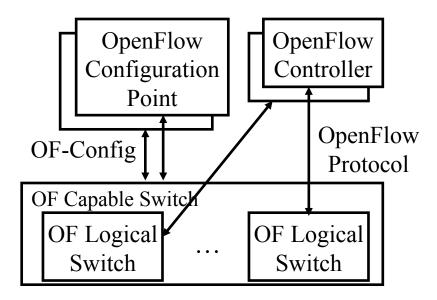
Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-15/

OpenFlow Configuration Protocol (OF-Config)

- OpenFlow Control Point: Entity that configures OpenFlow switches
- □ OF-Config: Protocol used for configuration and management of OpenFlow Switches.

Assignment of OF controllers so that switches can initiate connections to them:


- > IP address of controller
- > Port number at the controller
- Transport protocol: TLS or TCP
- Configuration of queues (min/max rates) and ports
- Enable/disable receive/forward speed, media on ports

Ref: Cisco, "An Introduction to OpenFlow," Feb 2013,

OF-Config (Cont)

- □ A physical switch = one or more logical switches each controlled by an OF Controller
- □ OF-Config allows configuration of logical switches.

Ref: ONF, "OpenFlow Management and Configuration Protocol (OF-Config 1.1.1)," March 23, 2013, https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain

OF-Config Concepts

- □ OF Capable Switch: Physical OF switch.

 Can contain one or more OF logical switches.
- □ OpenFlow Configuration Point: configuration service
- □ **OF Controller**: Controls logical switch via OF protocol
- □ **Operational Context**: OF logical switch
- OF Queue: Queues of packets waiting for forwarding
- OF Port: forwarding interface. May be physical or logical.
- □ OF Resource: ports, queues, certificates, flow tables and other resources of OF capable switches assigned to a logical switch
- **Datapath ID**: 64-ID of the switch. Lower 48-bit = Switch MAC address, Upper 16-bit assigned by the operator

Washington University in St. Louis

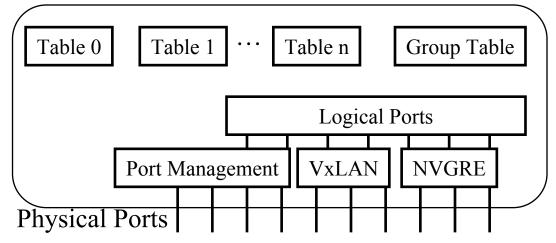
http://www.cse.wustl.edu/~jain/cse570-15/

OF-Config Evolution

- □ V1.0 (Jan 2012): Based on OpenFlow V1.2
 - > Assign controllers to logical switches
 - > Retrieve logical switch configurations
 - > Configure ports and queues
- □ V1.1 (May 2012): Based on OpenFlow V1.3
 - > Configuration of certificates
 - > Capability Discovery: Retrieve logical switch capabilities
 - > Configure logical tunnels (VXLAN, NVGRE, ...)
- □ V1.1.1 (Jan 2013): Bug Fix. Versioning support
- □ V1.2 (2014):
 - > OF-Config version negotiation
 - > Assigning resources to logical switches

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.openflow-config/of-config-1-1-1.pdf
<a

OpenFlow Notification Framework


- □ Notification: Event triggered messages, e.g., link down
- Publish/subscribe model: Switch = publisher. OpenFlow controller or OpenFlow config points, and others can subscribe. They will be notified about the events they subscribe.
- □ Use ITU-T M.3702 Notifications: Attribute value change, Communication alarm, Environmental alarm, Equipment alarm, QoS alarm, Processing error alarm, Security alarm, State change, Object creation and deletion
- □ Pre-existing Notifications: Do not fit in the framework but will be recognized.
 - > OpenFlow: Packet-in, Flow removed, Port Status, Error, Hello, Echo request, Echo reply, Experimenter
 - ➤ OpenFlow Config: OpenFlow logical switch instantiation, OpenFlow capability switch capability change, Successful OpenFLow session establishment, Failed OpenFlow session establishment, Port failure or recovery

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-notifications-framework-1.0.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain

Implementation Issues

- □ 40+ matching fields in a flow
- Multiple tables, each with a large number of flow entries
- Instructions and actions for each table
- Need VXLAN, NVGRE, etc. support
- □ For a large network, flow level programming can take a long time

Ref: R. Oshana and S. Addepalli, "Networking Trends- Software Defined Networking, Network Virtualization and Cloud Orchestration," Asia Power Arch. Conf, Oct 2012, https://www.power.org/wp-content/uploads/2012/10/13.-FSL-SDN-Openflow-and-Cloud-computing-UPD_Rob-Oshana.pdf
Washington University in St. Louis

©2015 Raj Jain

OpenFlow: Future Work Items

- Each controller has its own way to program.
 Need a common standard "Northbound API" (ONF NBI group)
- No standard API for communication between controllers of overlapping domain ⇒ Need an East-West API
- □ Ability to continue operation when the controller is down
- □ Flow \Rightarrow Decide once, use many times \Rightarrow Performance
 - > But does not help non-flow based request/response apps
- Need API to encrypt data plane packets, to inject packets, to instantiate a service, such as a firewall, IDS, on the switch
- Need to program an abstract view, e.g., source to destination, without knowing the physical network

Ref: http://onrc.stanford.edu/research_modern_sdn_stack.html

Ref: T. Nadeau and K. Gray, "SDN," O'Reilly, 2013, 384 pp, ISBN:978-1-449-34230-2

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

- 1. Four planes of Networking: Data, Control, Management, Service
- OpenFlow separates control plane and moves it to a central controller ⇒ Simplifies the forwarding element
- 3. Switches match incoming packets with flow entries in a table and handle it as instructed. The controller supplies the flow tables and other instructions.
- 4. Many hardware and software based switches including Open vSwitch
- 5. OpenFlow has been extended to IPv4, MPLS, IPv6, and Optical Network. But more work ahead.

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse570-15/

Reading List

- □ S. Azodolmolky, "Software Defined Networking with OpenFlow," Packt Publishing, October 2013, 152 pp., ISBN:978-1-84969-872-6 (Safari Book)
- T. Nadeau and K. Gray, "SDN," O'Reilly, 2013, 384 pp, ISBN:978-1-449-34230-2B (Safari Book)
- □ Pfaff and B. Davie, "The Open vSwitch Database Management Protocol," IETF draft, Oct 2013, http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-04

References

- N. McKeown, et al., ``OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, Vol. 38, No. 2, April 2008, pp. 69-74.
- ONF, "The OpenFlow Timeline,"
 http://openflownetworks.com/of_timeline.php
- Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0,"
 http://www.opendatacenteralliance.org/docs/Software_Defined_Networking_Master_Usage_Model_Rev1.0.pdf
- R. Oshana and S. Addepalli, "Networking Trends- Software Defined Networking, Network Virtualization and Cloud Orchestration," Asia Power Arch. Conf, Oct 2012, https://www.power.org/wp-content/uploads/2012/10/13.-FSL-SDN-Openflow-and-Cloud-computing-UPD_Rob-Oshana.pdf
- □ ONF, **Technical Library** (includes all OpenFlow, OF-Config, and other specifications), https://www.opennetworking.org/sdn-resources/technical-library

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

References (Cont)

- □ http://www.openvswitch.org/
- □ http://www.projectfloodlight.org/indigo/
- http://flowforwarding.github.io/LINC-Switch/
- □ http://github.com/CPqD/openflow-openwrt
- □ http://cpqd.github.io/ofsoftswitch13/
- □ http://sourceforge.net/projects/xorplus

Wikipedia Links

- □ http://en.wikipedia.org/wiki/OpenFlow
- □ http://en.wikipedia.org/wiki/Software-defined_networking
- □ http://en.wikipedia.org/wiki/Network_Functions_Virtualization
- □ http://en.wikipedia.org/wiki/Forwarding_plane
- □ http://en.wikipedia.org/wiki/NetFlow
- □ http://en.wikipedia.org/wiki/IP Flow Information Export
- □ http://en.wikipedia.org/wiki/SFlow
- http://en.wikipedia.org/wiki/Northbound interface
- □ http://en.wikipedia.org/wiki/Big_Switch_Networks

Wikipedia Links (Optional)

- □ http://en.wikipedia.org/wiki/Open Data Center Alliance
- □ http://en.wikipedia.org/wiki/Virtual Extensible LAN
- □ http://en.wikipedia.org/wiki/Optical_Transport_Network
- http://en.wikipedia.org/wiki/Automatically_switched_optical_n etwork
- □ http://en.wikipedia.org/wiki/Wavelength-division_multiplexing
- □ http://en.wikipedia.org/wiki/IEEE 802.1ad
- □ http://en.wikipedia.org/wiki/Transport_Layer_Security
- □ http://en.wikipedia.org/wiki/OpenStack
- □ http://en.wikipedia.org/wiki/IPv6 packet
- □ http://en.wikipedia.org/wiki/ICMPv6
- □ http://en.wikipedia.org/wiki/Multiprotocol Label Switching

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Acronyms

■ ACL Access Control List

→ API Application Programming Interface

□ ARP Address Resolution Protocol

□ ASICs Application Specific Integrated Circuit

BFD Bidirectional Forwarding Detection

■ BUM Broadcast, Unknown, and Multicast

□ CFM Connectivity Fault Management

CPU Central Processing Unit

DFCA Dynamic Frequency Channel Allocation

DSCP Differentiated Service Control Point

□ ECMP Equal Cost Multipath

□ ESP Encrytec Security Payload

□ FCAPS Fault, Configuration, Accounting, Performance and Security

□ GRE Generic Routing Encapsulation

■ ICMP Internet Control Message Protocol

ID Identifier

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Acronyms (Cont)

□ IDS Intrusion Detection System

□ IEEE Institution of Electrical and Electronic Engineers

□ IETF Internet Engineering Task Force

IGMP Internet Group Multicast Protocol

□ IP Internet Protocol

■ IPFIX IP Flow Information Export Protocol

□ IPSec IP Security

□ IPv4 Internet Protocol version 4

□ IPv6 Internet Protocol version 6

JSON Java Script Object Notation

□ KVM Kernel-based Virtual Machine

□ LACP Link Aggregation Control Protocol

□ LLDP Link Layer Discovery Protocol

MAC Media Access Control

MAN
Metropolitan Area Network

MPLS Multiprotocol Label Switching

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse570-15/

Acronyms (Cont)

■ NFV Network Function Virtualization

NVGRE Network Virtualization using Generic Routing Encapsulation

OF OpenFlow

ONF Open Networking Foundation

openQRM Open Qlusters Resource Manager

□ OpenWRT Open WRT54G (Linksys product name) software

OSPFOpen Shortest Path First

OTN Optical Transport Network

OVSDB Open vSwitch Database

□ PIM-SM Protocol Independent Multicast - Sparse Mode

PIM Protocol Independent Multicast

QoS Quality of Service

RAN
Radio area networks

■ RFC Request for Comments

□ RIP IGMP, IPv6, PIM-SM

□ RIP Routing Information Protocol

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Acronyms (Cont)

RPC Remote Procedure Call

■ RSPAN Remote Switch Port Analyzer

SDN Software Defined Network

□ SPAN Switch Port Analyzer

□ SSL Secure Socket Layer

□ STP Spanning Tree Protocol

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

□ TLS Transport Level Security

□ TLV Type-Length-Value

■ ToS Type of Service

□ TTL Time to Live

□ TTP Table Typing Patterns

UDP User Datagram Protocol

VLAN Virtual Local Area Network

□ VM Virtual Machine

□ VxLAN Virtual Extensible Local Area Network

WG Working Group

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/