Introduction to Internet of Things

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-15/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

- 1. What are "Things" and why IoT is important
- 2. Recent Protocols for IoT
- 3. IEEE 1901 Power Line Communication (PLC)
- 4. IEEE 1905.1 Convergent Digital Home Network

Note: This is part 1 of a series of class lectures on IoT. MQTT, 6LowPAN, and RPL are covered in other parts.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

What are Things?

- □ Thing = Not a computer
- □ Phone, watches, thermostats, cars, Electric Meters, sensors, clothing, band-aids, TV,...
- □ Anything, Anywhere, Anytime, Anyway, Anyhow (5 A's)

Ref: http://blog.smartthings.com/iot101/iot-adding-value-to-peoples-lives/

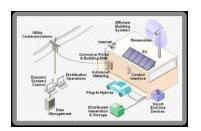
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

Internet of Things

- Less than 1% of things around us is connected.

 Refrigerator, car, washing machine, heater, a/c, garage door, should all be connected but are not.
- □ From 10 Billion today to 50 Billion in 2020 Should include processes, data, things, and people.
- □ \$14 Trillion over 10 years
 - ⇒ Third in the list of top 10 strategic technologies by Gartner (After Mobile devices, Mobile Apps, but before Clouds, ...)
- a.k.a. Internet of Everything by Cisco Smarter Planet by IBM

Ref: "Gartner Identifies Top 10 Strategic Technologies,"


http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html

Ref: J. Bradley, "The Internet of Everything: Creating Better Experiences in Unimaginable Ways," Nov 21, 2013,

http://blogs.cisco.com/ioe/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways/#more-131793

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

Sample IoT Applications

Smart Grid

Smart Health

Smart Home

Smart Cities

Smart Industries

Smart TV

Smart Watch

Smart Car

Smart Kegs

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

What's Smart?

- □ IoT = Instrument, Interconnect, Intelligently process (3 I's)
- \bigcirc Old: Smart = Can think \Rightarrow Can compute
- Now: Smart = Can find quickly, Can Delegate⇒ Communicate = Networking
- □ Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

Communicate

http://www.cse.wustl.edu/~jain/cse570-15/

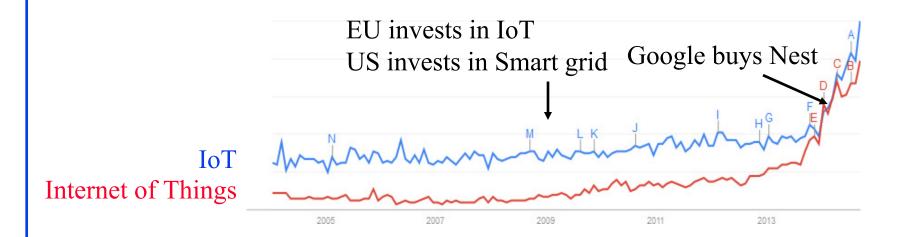
Why IoT Now?

- □ IoT = Sensing + Communication + Computation
- 1. Micro-Sensors: Temperature, Moisture, Pressure, air quality, ...
- 2. Tags: Radio Frequency Id (RFID), Quick Response (QR) Codes, ...
- 3. Energy Efficient Communication: Small or no batteries, Personal area communication (PAN), Bluetooth, ZigBee, ...
- 4. Micro-Computing: Micro multi-core chips, Raspberry Pi, Intel Galileo, Arduino, ...
- 5. Cloud Computing: Little or no local computing
- 6. Open/Small operating systems: Linux

Ref: CTIA, "Mobile Cyber security and the Internet of Things,"

http://www.ctia.org/docs/default-source/default-document-library/ctia-iot-white-paper.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/


Funding

Washington University in St. Louis

 $\underline{http://www.cse.wustl.edu/\sim}jain/cse570\text{-}15/$

Google Trends

- Around for 10 years
- IERC-European Research Cluster on the Internet of Things funded under 7th Framework in 2009
 - ⇒ "Internet of European Things"
- □ US interest started in 2009 w \$4B funding for smart grid in American Recovery and Reinvestment Act of 2009

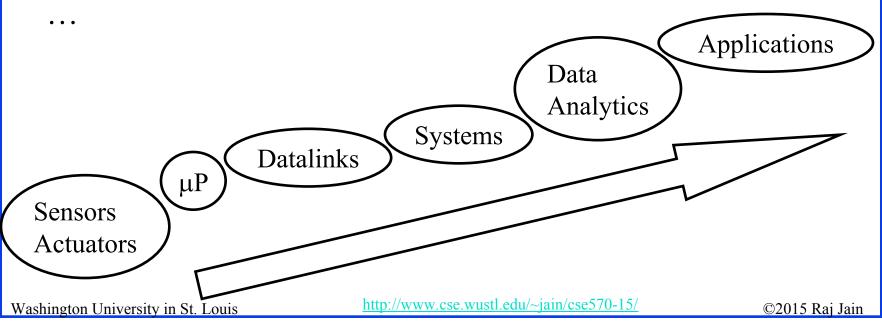
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Research Funding for IoT

- □ 70 M € in European Research program FP7
 - ⇒ Internet of European Things
- Networking and Information Technology Research and Development (NITRD)
 - > Group of 15 Federal agencies: NSF, NIH, NASA, DOE, DARPA, ONR, ...
 - > Recommends supplement to the president's annual budget
 - > CPS is one of the areas recommended by NITRD starting 2012 \Rightarrow Smart infrastructure
 - Smart Grid, Smart Bridges, Smart Cars, tele-operational surgical robots, Smart Buildings
- March 2014: £45M for IoT research in UK by David Cameron

Smart Grid


- \$4B funding in Economic Recovery Act
- □ Smart Grid can
 - > Identify surges, outages, and failure points
 - > Contain damage and reroute power around failure
 - > Accommodate new off-grid energy sources
 - > Load balance dynamically
 - > Be less vulnerable to accidental or malicious harms
- Meters that provide features needed for energy control
- Efficient cryptographic communication between substations and control centers
- Protocols for publishing/subscribing of system data

Ref: Workshop on Future Directions in CPS Security, July 2009, http://www.ee.washington.edu/faculty/radha/dhs_cps.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain

Business Opportunities

- Components: Sensors, wireless radios, protocols,
- □ Smart Objects: Smart TV, Camera, Watch, ...
- Systems: Buildings, Cars, Health, ...
- Network service providers: ISP
- Application Service Providers: Monitoring, Analytics, Apps,

Venture Activities in IoT

- □ \$1.1B invested in IoT startups by VCs in 153 deals in 2013
 - > Quantified Self: Know your body and mind
 - > Healthcare sensors: Wearable clock, sleep monitors
 - > Energy management
 - > Home Automation: Kitchenware, locks,
 - > Environmental monitoring: Air Quality sensors, personal weather stations
- □ January 2014: Google buys NEST for 3.3B
- May 2014: \$150M in VC investments in IoT by Cisco

Ref: http://www.cbinsights.com/blog/internet-of-things-investing-snapshot/ http://www.zdnet.com/cisco-invests-150m-in-internet-of-things-startups-7000028964/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Recent IoT Products

NEST Thermostat

Corventis: Wireless
Cardiac Monitor

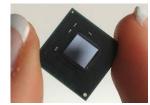
WEMO Remote

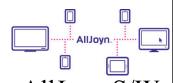
Tractive Pet Tracker

Ninja Blocks

Revolve Home Automation

ThingWorx Application Platform


Lings
Cloud Platform


Mbed Development
Platform

Xively Remote Access API

Intel Quark Processor

AllJoyn S/W Framework

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

IoT Research Challenges

- 1. Naming and Addressing: Advertising, Searching and Discovery
- 2. Service Orchestration
- 3. Power/Energy/Efficient resource management. Energy harvesting
- 4. Things to Cloud: Computation and Communication Gateways
- 5. **Miniaturization**: Sensors, CPU, network
- 6. **Big Data Analytics**: 35 ZB of data \$2B in value by 2020
- 7. Semantic technologies: Information and data models for interoperability
- 8. Virtualization: Multiple sensors aggregated, or a sensor shared by multiple users
- 9. Privacy/Security/Trust/Identity/Anonymity
 Target Pregnancy Prediction
- 10. Heterogeneity/Dynamics/Scale

Internet of Harmful Things

Imagine, as researchers did recently at Black Hat, someone hacking your connected toilet, making it flush incessantly and closing the lid repeatedly and unexpectedly.

News

Worm may create an Internet of Harmful Things, says Symantec (Take note, Amazon)

Security firm Symantec says it has found a Linux worm aimed at Internet of Things devices

By Patrick Thibodeau

December 3, 2013 01:22 PM ET 👂 Add a comment

Computerworld - Security researchers are gradually raising warnings that the Internet of Things will increase, by multitudes, the number of things that can be hacked and attacked.

The Hitchcockian plotlines are endless. Replace <u>The Birds</u> with flying <u>Amazon</u> delivery drones. Or imagine, as researchers did recently at Black Hat, someone hacking your connected toilet, making it flush incessantly and closing the lid

http://www.cse.wustl.edu/~jain/cse570-15/

©2015 Raj Jain

repeatedly and unexpectedly.

Privacy Issue: Beacons

- Advertizing based on proximity
- Peripherals (your phone) broadcasts its presence if Bluetooth is turned on
- □ Primary aim of these broadcasts is to allow device discovery
- Advertising packets consist of a header and max 27B of payload with multiple TLV-encoded data items
 - ➤ May include signal strength ⇒ Distance
- □ iOS7 iPhones can send/received iBeacons
- Can be used for customized advertising, indoor location, geofencing
- PayPal uses this to identify you.
 You can pay using a PIN and your phone.

Power per MB

Type	Bit rate	TX Power	mJoules/MB
802.11b	11Mb	50mW	36.4
802.11g	54Mb	50mW	7.4
802.11a	54Mb	200mW	29.6
802.15.1 Bluetooth	1Mb	1mW	8.0
802.15.3	55Mb	200uW	0.03

Once connected, Bluetooth classic maintains connections even when there is no data. Low power but not low enough.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

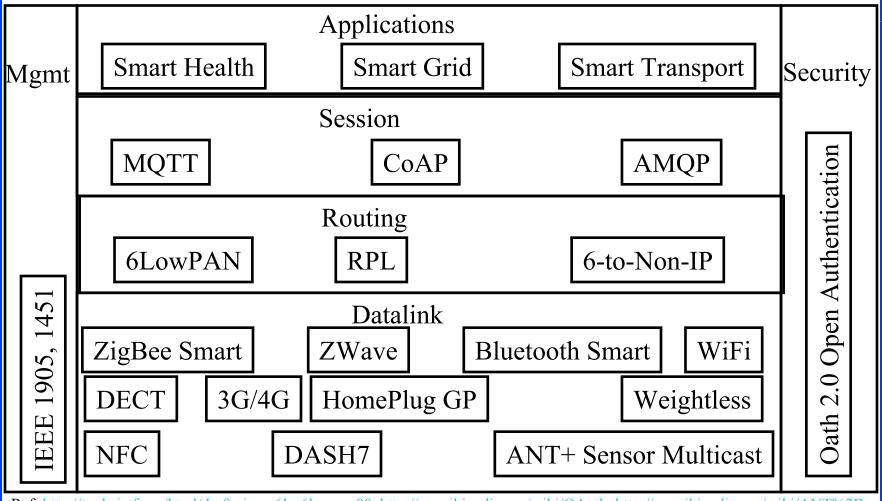
Datalink Issues

- Energy efficiency
 - \rightarrow Need to decrease energy/bit by a factor of 1000
 - > Energy/bit has gone down by a factor of 2 per year
 - > Either wait ten years or design better protocols
- Small messages ⇒ Need low overhead
- \square Limited computing \Rightarrow Light weight protocols
 - ⇒ lightweight Encryption, authentication, security
- Quality of Information (QoI)

Networking Issues

- \square Large number \Rightarrow 32-bit or 48-bit addressing not sufficient
- 32-bit IPv4 addresses too small
- 48-bit IEEE 802 too small
- 128-bit IPv6 addresses too large. Tiny things do not have energy to transmit such large addresses.
- □ 16-bit local addresses and 64-bit global addresses
- □ 6LowPAN, 6-to-NonIP

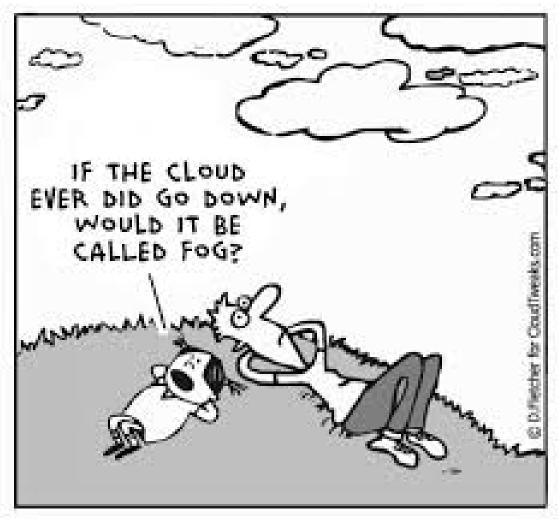
Last 100m Protocols


- ☐ The Last Mile: Mobile and Broadband Access revolution Smart Grid, Smart Cities, Smart Industries
- □ The last 100m: Smart home
- □ The last meter: Smart Healthcare, Smart Wearable's

Legacy IoT Protocols

- **BACnet**: Building Automation and Control Network
- □ LonWorks: Local Operating Network (like BACnet)
- ModBus: Modicon (Schneider Electric)'s Serial Bus
- □ KNX: Home and Building Automation Standard
- □ **Z-Wave**: Wireless Communication for Home Automation
- M-Bus: Bus for remote reading of gas and electric meters
- □ ANSI CI12.20: Electric Meter Accuracy and Performance
- □ **DLMS**: Device Language Message Specification
- □ COSEM: Company Specification for Energy Metering

Recent Protocols for IoT

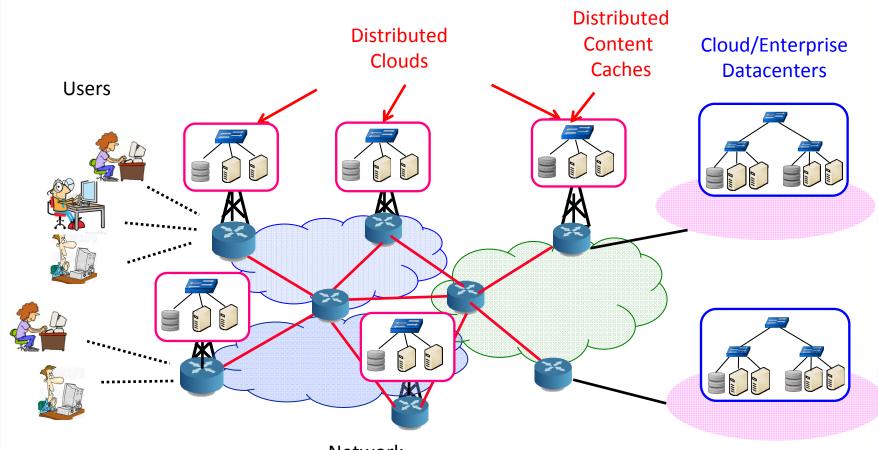

Ref: http://en.wikipedia.org/wiki/OAuth, http://en.wikipedia.org/wiki/Near_field_communication, http://en.wikipedia.org/wiki/Near_field_communication, http://en.wikipedia.org/wiki/Near_field_communication, http://en.wikipedia.org/wiki/Near_field_communication, http://en.wikipedia.org/wiki/Near_field_communication, http://en.wikipedia.org/wiki/Weightless_%28wireless_communications%29
http://www.cse.wustl.edu/~jain/cse570-15/
http://en.wikipedia.org/wiki/Near_field_communications, http://www.cse.wustl.edu/~jain/cse570-15/
http://www.cse.wustl.edu/~jain/cse570-15/
http://www.cse.wustl.edu/~jain/cse570-15/
http://www.cse.wustl.edu/~jain/cse570-15/

Standardization

- □ Almost every standards body is working on IoT:
 - > IEEE: 802.11, 802.15.4, HomePlug
 - > ZigBee Alliance: ZigBee Smart
 - > Bluetooth SIG: Bluetooth Smart
 - > IETF: RPL, 6LowPAN
 - > ITU:
 - > ETSI: DECT/ULE
 - > IPSO, ...
- □ Seven organizations joined together to avoid duplication: ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC ⇒ oneM2M

Ref: http://www.onem2m.org

Fog Computing


Ref: http://community.spiceworks.com/topic/254392-fog-computing-replaces-cloud-as-new-tech-buzzword Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

Fog Computing (Cont)

- Location Aware and Location Sensitive
 - \Rightarrow Low latency \Rightarrow Computing in micro clouds
 - \Rightarrow Computing in the edge \Rightarrow Computing everywhere
 - \Rightarrow Fog
- □ Geographically distributed => Everywhere/Anywhere
- □ Large Scale
- Mobility
- □ Real-Time

Ref: F. Bonomi, et al., "Fog Computing and Its Role in the Internet of Things," ACM MCC'12, August 17, 2012, Helsinki, Finland Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain

Trend: Micro-Clouds on Towers

Network

New Business Opportunities: Datacenters on Towers, Internet of Things

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Mobile Healthcare Use Case Medical Application Service Provider Home sensors for patient monitoring **Multi-Cloud Mobile Application Deployment and Optimization Platform** Hospital **SDN** Insurance Co Controller Cloud Cloud Mobile Body Area **5G Carrier** Network for Doctor mobile patient http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis ©2015 Raj Jain

Multi-Cloud Management Application Application Deployment Service Developers Administrators **Application Service Providers** MCAD Application Workflow MCAD Application Service MCAD Application Cloud abstraction Northbound Interface abstraction abstraction Multi-Cloud Application Delivery (MCAD) Platform Southbound Interface MCAD Resource Driver MCAD Resource Driver MCAD Resource Driver (OpenDaylight) (OpenStack) (EC2) **Resource Providers** Virtual Virtual Virtual **Virtual WAN** Virtual Virtual Virtual Hosts Storage Network Services Network Hosts Storage OpenStack OpenDaylight EC2 Cloud Datacenter Enterprise Datacenter Carrier Network Network POP Micro-Datacenters

Washington University in St. Louis

www.se.wustl.edu/~jain/cse570-15/

- Less than 1% of things are connected
 ⇒ IoT is a big opportunity for academics and industry
- 2. Smart Grid and Energy management is leading the change.
- 3. Smartness comes from communication capability since the computation can be delegated
- 4. Right at the knee: Academic and Startup Research opportunities in almost subfields of computing including hardware development, data analytics, security, and networking.
- 5. Cloud computing everywhere leads to fog computing and multi-cloud computing ⇒ AppFabric

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Reading List

- Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, October 2012, 391 pp., ISBN:978-1-4398-9299-2 (Safari Book).
- Olivier Hersent; David Boswarthick; Omar Elloumi, "The Internet of Things: Key Applications and Protocols," John Wiley & Sons, February 1, 2012, 370 pp., ISBN:978-1-119-99435-0 (Safari Book).

Optional:

- Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything," Apress, January 2014, 192 pp., ISBN:1-4302-5740-7 (Safari Book).
- Hakima Chaouchi, "The Internet of Things: Connecting Objects," John Wiley & Sons, June 2010, 288 pp., ISBN:978-1-848-21140-7 (Safari Book).
- Nitesh Dhanjani, "Abusing the Internet of Things," O'Reilly Media, Inc., August 2015, 250 pp., ISBN:978-1-4919-0233-2 (Safari Book).

http://www.cse.wustl.edu/~jain/cse570-15/

Wikipedia Links

- □ <u>https://en.wikipedia.org/wiki/Fog_computing</u>
- □ https://en.wikipedia.org/wiki/Industrial_Internet
- □ https://en.wikipedia.org/wiki/Internet_of_Things
- □ https://en.wikipedia.org/wiki/IPSO Alliance
- □ https://en.wikipedia.org/wiki/Machine to machine
- □ https://en.wikipedia.org/wiki/Multicloud
- □ <u>https://en.wikipedia.org/wiki/Nearables</u>
- □ https://en.wikipedia.org/wiki/Smart device
- □ https://en.wikipedia.org/wiki/SmartThings
- □ https://en.wikipedia.org/wiki/Ubiquitous computing
- □ https://en.wikipedia.org/wiki/Wearable_technology
- □ https://en.wikipedia.org/wiki/Web_of_Things

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Acronyms

	6LowPAN	IPv6 over Low Powered Personal Area Network		
	ACM	Automatic Computing Machinery Association		
	AMQP	Advanced Message Queueing Protocol		
	ANSI	American National Standards Institute		
	ANT	A proprietary open access multicast wireless sensor network		
	ANT+	Interoperability function added to ANT		
	API	Application Programming Interface		
	ARIB	Association of Radio Industries and Businesses (Japan)		
	BACnet	Building Automation and Control Network		
	CI12.20	ANSI Standard for Electric Meter Accuracy and Performance		
	CoAP	Constrained Application Protocol		
	COSEM	Company Specification for Energy Metering		
	CPS	Cyber Physical Systems		
	CPU	Central Processing Unit		
	CTIA	Cellular Telecommunication Industries Association		
	DARPA	Defense Advance Research Project Agency		
	DASH7	DASH7 ISO 18000-7 RFID standard for sensor networks		
Was	shington University in St	t. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain		

DECT Digital Enhanced Cordless Communication

DLMS Device Language Message Specification

DoE Department of Energy

■ EC2 Elastic Compute Cloud 2 (by Amazon)

□ ETSI European Telecommunications Standards Institute

■ EU European Union

□ FP7 Framework Program 7

□ GP GreenPHY

GreenPHY Green Physical Layer

HomePlug-GP HomePlug Green PHY

□ IEEE Institute for Electrical and Electronic Engineers

□ IERC IoT-European Research Cluster

□ IETF Internet Engineering Task Force

□ iOS iPhone Operating System

□ IoT Internet of Things

□ IP Internet Protocol

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

☐ IPSO IP for Smart Objects

■ IPv4 Internet Protocol version 4

■ IPv6 Internet Protocol version 6

□ ISP Internet Service Provider

ITU International Telecommunications Union

■ KNX Building automation protocol

■ MB Mega-byte

MCAD Multi-Cloud Application Deployment Platform

■ MQTT Message Queue Telemetry Transport

NASA National Aeronautical and Space Administration

□ NEST Name of a product

NFC Near field communication

□ NIH National Institute of Health

□ NITRD Networking and Info Tech Research and Development

NonIP Non-Internet Protocol

NSF National Science Foundation

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

OAuth Open Authorization protocol from IETF

oneM2M One Machine to Machine

ONR Office of Naval Research

□ PAN Personal area network

PIN Personal Identification Number

PLC Power Line Communication

PoP Point of Presence

QoI Quality of information

QR Quick Response

RFID Radio Frequency Identifier

RPL Routing Protocol for Low Power and Lossy Networks

SDN Software Defined Networking

SIG Special Interest Group

□ TLV Type-Length-Value

□ TV Television

□ UK United Kingdom

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

□ ULE Ultra Low Energy

US United States

□ VC Venture Capital

■ WAN Wide Area Network

□ WiFi Wireless Fidelity

XML eXtensible Markup Language

□ ZB Ziga-Byte