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Abstract 
Due to the explosion of data made available due to cloud computing, we are faced with issues of 
resource management, energy efficiency, and security. This paper explores recent literature on 
all the aforementioned topics as they relate to cloud computing and examines a number of 
methods which propose to make use of machine learning to either allow for more dynamic 
resource management, better energy efficiency, or higher security. Additionally, the proposed 
methods are compared to one another to demonstrate their particular strengths and weaknesses, 
in order to allow further work to build upon the conclusions reached and to propose continually 
improving methods.  
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1. Introduction 
As cloud computing has become more popular due to the efforts of big name companies such as 
Amazon, Google, and Microsoft, it has allowed for the amount of available data to increase 
exponentially [Li13][Bala14][Vinay15], leading to increased opportunities for utilization. As a 
result, cloud computing and machine learning (ML) have formed a partnership, of sorts, in which 
both benefit from the other’s advancement and refinement. ML, for example, has been able to 
better train its algorithms from the increased datasets, leading to results such as Facebook’s 
DeepFace – an algorithm that identifies faces and records accuracies of up to 97.35%. 
[Taigman14] For the purposes of this paper, however, the growth of machine learning from 
cloud computing will be put on hold in favor of discussing the particular applications offered to 
cloud computing by ML. In particular, the following paper will begin with a discussion on the 
ways in which ML can help to better predict and manage resources on virtual machines (VMs). 
From there, it will move to a look at ways in which ML can reduce energy consumption on 
servers and datacenters before concluding with an examination of the potential security benefits 
offered by ML. Finally, I conclude with a summary of the approaches discussed, citing their 
strengths, weaknesses, and areas for improvement, from which future research can expand upon. 

2. Predicting and Managing Resources 
Despite the prevalence of cloud computing, the most popular cloud vendors have yet to 
capitalize on dynamic resource management. Amazon, Google, and Microsoft each offer some 
degree of limited customizability for one’s virtual instance – such as the ability to choose the 
number of cores, the amount of memory, and the capacity (and type) of storage. However, once 
configured, the virtual machine (VM) is static, meaning that if a customer requires more 
resources for their virtual machine, they must request more resources. Likewise, if a customer 
only uses 10% of their VM’s resources, the rest essentially goes to waste and cannot be 
redistributed to other customers or used by the vendors for their own purposes. As a result, the 
following section will focus on recent work dealing on cloud resource prediction and 
management using ML in order to outline paths by which cloud vendors can offer more dynamic 
services effectively and reliably. 

Of the recent work, the three most commonly cited approaches to dynamic resource management 
are linear regression (LR), support vector machine (SVM), and artificial neural network (ANN). 
Usually, LR is used as the baseline ML method from which the other two (SVM and ANN) are 
compared, in order to gauge their effectiveness and their potential advantages and disadvantages; 
however, sometimes LR is used in addition to the other proposed techniques in order to capture 
particular features produced by SVM or ANN. As a result, the bulk of the work done in this 
section will be focused on SVM and ANN. 

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html


A Survey of Machine Learning Applications to Cloud Computing 

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html  3 

2.1 SVM 

In this section, we will first take a brief look at the ways in which SVM is implemented by both 
[Matsunaga10] and [Kundu12]. We will then see how each implementation fared, particularly in 
relation to an LR model, which the authors take as the baseline standard for comparison. 

For SVM implementation, the focus is primarily on performing non-linear classification using a 
kernel function, which allows for effective mapping of inputs onto some multi-dimensional 
vector space [Matsunaga10][Kundu12]. Of the possible kernels, polynomial and radial basis 
functions prove to be the most popular, due to their ability to analyze input samples in relation to 
others, as well as their ability to analyze input samples in combination and compared to vectors 
of higher dimensionality. Once the classification is complete, LR is then used in order to 
construct a hyperplane from the mapping, thereby obtaining the final model from which the 
predictions for the appropriate VM are made. 

In order to gauge how the SVM method performed, [Matsunaga10] and [Kundu12] used 
decidedly different environments. [Matsunaga10] decided to evaluate the models using two 
bioinformatics applications, Basic Local Alignment Search Tool (BLAST) and Randomized 
Axelerated Maximum Likelihood (RAxML). Additionally, [Matsunaga10] evaluated the models 
based on predicted required resources as well as predicted execution time, the results of which 
can be seen in Figure 1. 
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Figure 1: Results of [Matsunaga10] for SVM and LR 

As Figure 1 shows, SVM is the victor in both predicted resources and predicted execution time 
for both the BLAST and RAxML environments. Moreover, SVM shows clear advantages in 
three of the four cases – BLAST: Predicting Disk Space, BLAST: Predicting Execution Time, 
and RAxML: Predicting Execution Time. In these cases, SVM reduces percentage error from 
1204 to 283, 22.98 to 11.84, and 1379 to 135, respectively. Even in the case in which SVM does 
not show as clear of dominance, RAxML: Predicting Resident Memory, SVM still reduces 
percentage error down to 2.01 from 3.14 (via LR). 

[Kundu12], on the other hand, decided to use two benchmark environments in order to test the 
generated SVM model, the Rice University Bidding System (RUBiS) and Filebench. In addition 
to the two global environments (RUBiS and Filebench), [Kundu12] supplemented the tests with 
the following additional sub-models in order to achieve finer granularity with regards to results 
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for each test: RUBiS Browsing, RUBiS Bidding, Filebench OLTP, Filebench Webserver, and 
Filebench Fileserver. It is also important to note that unlike [Matsunaga10], [Kundu12] measured 
only predicted resources, rather than predicted resources and predicted execution time. The 
results of the tests can be seen in Figure 2. 

 
Figure 2: Results of [Kundu12] for SVM and LR 

From the results, we can see that in all testing environments, SVM outperforms LR. However, 
we also see that the results are varied in terms of dominance. In both test cases using RUBiS, we 
see that SVM significantly outperforms LR in both the global and sub-model cases. However, in 
the Filebench test cases, such performance is not mirrored. In each of the Filebench/Global 
cases, we do see that SVM outperforms LR by quite some margin, but in each of the sub-model 
cases, the performance margin is much smaller and there may no longer be a clear benefit to 
using SVM over LR in such cases. Additionally, it’s interesting to note that, overall, RUBiS 
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presented much higher average percent prediction errors for both LR and SVM and for both the 
global model and sub-models, demonstrating an inability for either LR or SVM to find ample 
success using the RUBiS environment. 

As we can see, both [Matsunaga10] and [Kundu12] find similar results when testing the 
performance of SVM as compared to LR in regards to resource prediction: namely, SVM clearly 
outperforms LR across most test cases. And even in those cases in which the gap between SVM 
and LR is not quite so large, the gap still does, in fact, exist, demonstrating a strict dominance of 
SVM over LR in the test cases examined, thus concluding our examination of SVM. 

2.2 ANN 

In this section, we will again visit the work by [Matsunaga10] and [Kundu12], but rather than 
discussing SVM, we will focus on ANN. We will begin by briefly examining the ways in which 
ANN is implemented before continuing on to the results obtained by both papers, as compared to 
the standard performance of LR. 

For any ANN implementation, the focus is primarily on obtaining a balanced hidden neuron to 
hidden layer ratio, in order to avoid under-fitting from lack of weight or over-fitting from excess 
weight with regards to input. To obtain this balance, one could naively set a standard ratio and 
observe results for all tests using that ratio. [Matsunaga10] However, an alternative approach is 
to iteratively add more hidden neurons until no noticeable change in accuracy occurs, at which 
point more hidden layers are added. This is then repeated until neither additional hidden neurons 
nor additional hidden layers improve accuracy, thereby achieving a testable model with a more 
accurate balance [Kundu12]. 

Regardless of the implementation used, there needs to exist environments in which to test the 
models generated. We have seen that both [Matsunaga10] and [Kundu12] use the same 
environments for tests of ANN as for tests of SVM (as seen in 2.1) – BLAST/RAxML and 
RUBiS/Filebench, respectively. Additionally, the comparison will be to LR (also like in 2.1) in 
order to give a baseline standard for comparison. The results of [Matsunaga10] using ANN can 
be seen in Figure 3, and the results of [Kundu12] can be seen in Figure 4. 
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Figure 3: Results of [Matsunaga10] for ANN and LR 

As Figure 3 shows, the results of ANN and LR are not nearly as one-sided as the results obtained 
while testing SVM and LR. That is, unlike SVM, which had the advantage over LR in both 
BLAST test cases and in both RAxML test cases, ANN performs better only in the BLAST: 
Predicting Disk Space case, BLAST: Predicting Execution Time, and the RAxML: Predicting 
Execution Time case. Even in the BLAST: Predicting Disk Space case, the performance is only 
marginally better (1129 compared to 1204) and still with an extraordinarily high percentage 
error. In RAxML: Predicting Resident Memory, however, LR performs significantly better, with 
percentage errors of 3.14 for LR and 30.29 for ANN, raising doubts about the superiority of 
ANN over LR. 
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Figure 4: Results of [Kundu12] for ANN and LR 

Unlike the results in Figure 3, the results in Figure 4 demonstrate a clear advantage for ANN 
over LR, demonstrating strict performance advantages in all test cases. Furthermore, in all cases 
except for Filebench/Global and OLTP/Sub-Model, ANN gives significantly better performance 
than LR, with less than half the average prediction error. And even in those cases in which ANN 
gives only moderate performance advantages, ANN keeps a relatively low prediction error, with 
rates of 12.89 and 10.60 for Filebench/Global and OLTP/Sub-Model, respectively. Also notable 
is that ANN never reaches the extremely high percentage error rates seen in Figure 3 (e.g. in 
BLAST: Predicting Disk Space, ANN had a 1129 percentage error rate) – in all tests performed 
by [Kundu12], the average prediction error was capped at 68.57, with the second highest average 
prediction error being 19.85. 
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Contrary to the tests involving SVM, [Matsunaga10] and [Kundu12] each achieved very 
different results. In [Matsunaga10]’s tests using BLAST and RAxML, ANN did not strictly 
outperform LR and in some cases performed significantly worse than LR. However, in 
[Kundu12]’s tests using RUBiS and Filebench, as well as their respective sub-models, ANN did 
strictly outperform LR and even in the cases in which ANN only outperformed LR marginally, 
ANN still achieved relatively low average prediction error rates. 

2.3 Comparing SVM and ANN 

Since we have seen implementations and results for both SVM and ANN, we can now turn to 
examining the comparison of SVM and ANN methods for those aforementioned test 
environments in [Matsunaga10] and [Kundu12]. We will first look at SVM and ANN in the 
BLAST and RAxML test cases, as seen in Figure 5, before turning to the RUBiS and Filebench 
test cases, as seen in Figure 6. 
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Figure 5: Comparison of SVM and ANN in [Matsunaga10] 

From the comparison in Figure 5, we can see that for all cases tested, SVM outperformed ANN. 
In the cases in which resources were predicted, SVM performed significantly better, with 
prediction errors of 283 and 2.01 compared to ANN’s prediction errors of 1129 and 30.29. In the 
other cases, SVM only slightly outperformed ANN with prediction errors of 11.84 and 135 
compared to 15.95 and 164. This demonstrates that although both performed relatively evenly in 
regards to predicting execution time, SVM was the clear victor in regards to the actual prediction 
of resources.  
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Figure 6: Comparison of ANN and SVM in [Kundu12] 

Unlike the results seen in Figure 5, the comparison in Figure 6 shows that SVM demonstrates no 
clear advantage over ANN in the RUBiS and Filebench test environments. Rather, there is only a 
single case in which either SVM or ANN shows clear superiority. In the RUBiS/Global and 
Bidding/Sub-Model case, the RUBiS/Global test showed that ANN outperformed SVM 
significantly, with average prediction errors of 19.52 and 66.86, respectively. In the only other 
notable cases, the average prediction errors slightly favored SVM, with error rates of 55.78 for 
SVM and 68.57 for ANN (in RUBiS/Global and Browsing/Sub-Model) and 7.4 for SVM and 
11.59 for ANN (in Filebench/Global and OLTP/Sub-Model). 

From what we have seen, it’s hard to determine whether either SVM or ANN shows clear 
advantages over the other. If we were to only look at the test cases in [Matsunaga10], we might 
immediately judge that SVM clearly is the better method for dynamic resource management. 

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html


A Survey of Machine Learning Applications to Cloud Computing 

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html  12 

However, the test cases in [Kundu12] demonstrate that SVM does not always perform 
significantly better than ANN, which highlights the importance of particular test environments in 
determining performance. That is, the preference of whether to use SVM or ANN for dynamic 
resource management may just come down to the particular environments and platforms a 
particular cloud vendor decides to use. For bioinformatics (as in [Matsunaga10]), SVM appears 
to be the clear winner; in other, more general applications (as in [Kundu12]), SVM and ANN 
appear to perform fairly equally.  

2.4 Summary 

In this section, we’ve taken a look at two proposed methods for dynamic resource management, 
SVM and ANN. In order to test these methods, a number of different environments were used 
and the results were first compared to the performance of LR in the same environment before 
finally comparing SVM to ANN for each environment. As a general rule, the results showed that 
both SVM and ANN outperformed LR except for a few outlying cases. However, it was less 
clear whether either SVM or ANN outperformed the other, with the conclusion seeming to be 
dependent upon the particular test environment in question. As a result, we can conclude that 
SVM and ANN are, in fact, more capable of predicting resources than LR, but the determination 
of SVM or ANN requires more testing for the particular scenario. 

3. Effective Use of Resources 
In addition to being able to better predict and allocate resources to the customer (as seen in 
section 2), being able to adaptively monitor, coordinate, and predict workload scheduling has 
become a key issue in terms of both quality of service (QoS) and energy efficiency (EE). That is, 
while it may be easiest to maintain an always active service in order to ensure that the service 
level agreement (SLA) between the vendor and company is always met (therefore maintaining a 
consistently high QoS), this always active server may require more energy than is absolutely 
necessary, leading to wasted resources. For example, if a customer is actively using the cloud 
resource in question every day from 9:00 AM to 5:00 PM, but never afterwards, it’s not essential 
that the service be provided outside of the 9:00 AM to 5:00 PM range, thereby saving on 
resources that can be allocated to other customers (or back to the vendor, themselves), saving on 
costs of operation and maintenance, all while still maintaining the necessary QoS for the 
customer. In the following section, we’ll look at some of the recent work being done in the fields 
of QoS and EE, starting with a more general overview of why such research is motivated, before 
considering the various approaches taken, and concluding with a summary of the approaches 
seen. 

3.1 Motivating Dynamic and Effective Use of Resources 

The essential focus of this section, more broadly, is to examine the ways in which dynamic and 
effective use of resources can be implemented, while still maintaining the necessary QoS. For the 
remainder of Section 3, the main points of focus will be on the following two techniques that can 
be utilized to save resources: (1) turning off idle machines; and (2) consolidation of tasks 
[Berral10]. 
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Although these two techniques may seem trivial and obvious, their impact on energy 
consumption is enormous. In order to provide perspective into the issue of overall energy 
expenditure, [Berral10] recorded the results of wattage used in relation to increasing workload, 
as seen in Figure 7. These results were obtained using a 4-CPU and similarly results were 
previously observed by [Bianchini04]. 

 
Figure 7: Energy Consumed for Various Stages of CPU Load (from [Berral10] p. 221) 

As we can see, Figure 7 demonstrates just how severe of an increase in energy is required for the 
shift between OFF and IDLE (0 Watts to 230 Watts), especially compared to the relatively 
modest shift between IDLE and the max CPU load of 400% (230 Watts to 300 Watts). With this 
in mind, the importance of turning off idle machines – in order to avoid the extreme energy 
requirements for the idle state – as well as the importance of consolidation – by allowing 
machines to be more fully utilized, thereby performing similarly to the max CPU seen above and 
allowing other machines to move to the off state, which saves energy overall – becomes more 
apparent. It is this importance that drives the motivation behind dynamic and effective use of 
resources, and will be key to understanding the research discussed later in this section. 

3.2 Greedy Algorithm 

In this section, we will focus on the work done by [Chase01], which uses a greedy algorithm, 
named Maximize Service Revenue and Profit (MSRP), in order to decrease power consumption 
in shared service centers. Although this research does not involve cloud computing, it provides a 
good basis from which further research into cloud computing EE can take place. 

[Chase01] attempts to better determine the times in which energy is actually required, in order to 
avoid wasting energy for those times in which actual activity is minimal or nonexistent. With the 
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typical static allocation of energy for a particular system, we see energy consumption compared 
to activity (throughput) similar to the mapping shown in Figure 8. 

 
Figure 8: Static Allocation of Energy Compared to Activity (from [Chase01] p. 113) 

As we can see from Figure 8, the power consumption will remain fairly constant despite the 
activity fluctuating. This results in a massively inefficient use of energy – rather than always 
using the same amount of energy regardless, a more efficient use of the energy would have the 
energy consumption correspond to the rate of activity (i.e. more activity leads to more energy 
consumption). 

In order to allow for this dynamic energy consumption, [Chase01] proposes MSRP. To construct 
the greedy algorithm, [Chase01] uses a weighted system involving resource costs, supplies, and 
demands. For each of these attributes, a weight is assigned, which is then used in order to 
determine prices for the resources. From these weights, resource prices are allowed to fluctuate 
according to the dynamically oscillating supply and demand for resources as well as the 
(potentially) dynamic resource costs. This weighting allows MSRP to allocate energy more 
efficiently than a simple, static allocation, as we can see in Figure 9. 
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Figure 9: Dynamic Allocation of Energy Compared to Activity (from [Chase01] p. 113) 

As we can see, MSRP allows for the energy consumption to vary according to the activity level – 
so when the activity level is low (e.g. minute 145), the energy consumption is also low; and 
when the activity level is high (e.g. minute 160), the energy consumption is also high. From this 
dynamic allocation, [Chase01] recorded an overall 29% savings of energy compared to the static 
allocation. However, it’s also important to take note of the difference in latency levels between 
Figure 8 and Figure 9. In Figure 8 – the static allocation – we see latency levels that correspond 
to activity. However, in Figure 9 – the dynamic allocation – we see more consistent latency 
levels. In addition to the more static latency, the dynamic allocation appears to result in slightly 
higher overall latency levels than the static allocation. 

As we have seen from [Chase01]’s greedy algorithm MSRP, a dynamic allocation of energy can 
result in overall savings in energy consumption. However, from the tests performed by 
[Chase01], this dynamic allocation resulted in a more consistent, and overall higher, level of 
latency than with the static allocation. As a result, any further research involving this dynamic 
allocation, or any customer wishing to use MSRP, would need to take into account both the 
potential benefits offered by the energy savings as well as the potential detriments of overall 
higher latency. 

3.3 Naïve Algorithms and Backfilling Algorithms 

In this section, we will take a look at the work performed in [Berral10], in which a machine 
learning dynamic backfilling algorithm (MLDB) is used. In addition to MLDB, a variety of other 
algorithms will be considered, in order to best understand the advantages and disadvantages of 
MLDB. The other algorithms considered are as follows: random assignment, round-robin 
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assignment, conventional backfilling, and non-machine learning dynamic backfilling. As the 
names of the algorithms suggest, the random assignment algorithm assigns tasks randomly, the 
round-robin assignment algorithm assigns tasks to all possible nodes evenly, the conventional 
backfilling algorithm attempts to assign a tasks in order to maximize individual node workload 
(thereby saving nodes from having to be utilized), the dynamic backfilling algorithm builds upon 
the conventional backfilling algorithm by also allowing task migration between nodes in order to 
increase consolidation, and the MLDB implements a supervised learning schema (as seen in 
Figure 10) and an SLA function in order to improve predictions and allow for better dynamic 
allocation. 

 
Figure 10: Supervised Learning Schema for MLDB (adapted from [Berral10]) 

Essentially, the schema takes labeled data and feeds it into a particular learning algorithm (in this 
case, MLDB) in order to generate a model. With this model, we would then input unlabeled data 
and get labeled data as output. So as inputs for the MLDB model, we would feed in the 
characteristics of a particular scenario, involving data such as activity levels, energy 
consumption, SLA fulfillment, and so on. 

In testing this particular method, [Berral10] found a key relationship between the aggressiveness 
of the turn on/off mechanism and the ability to fulfill the SLA – that is, the more cautious the 
turn on/off mechanism was, the easier it was to achieve higher SLA fulfillment. However, 
increased caution also resulted in higher energy consumption, due to leaving more machines idle 
or with less consolidation, leading to a tradeoff function. As a result, [Berral10] concluded that a 
compromise is best reached when λmin (earlier machine turnoff) and λmax (higher 
consolidation) have values of 30% and 60%, respectively, allowing for near complete SLA 
fulfillment while still retaining a sufficiently aggressive dynamic turn on/off mechanism to save 
energy. 

To summarize the results obtained, the MLDB algorithm actually did not perform best in all 
cases, particularly in the case of grid workload, due to unnecessary caution. Although it achieved 
a 99.90 SLA fulfillment, it required 1574.78 kW of energy whereas the conventional backfilling 
algorithm and dynamic backfilling algorithm only required 1141.65 kW of energy and 1118.86 
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kW of energy, respectively. Furthermore, MLDB’s energy consumption was only slightly better 
than the energy consumption of the round robin and random algorithms, which required 1696.66 
kW of energy and 1671.16 kW of energy, respectively. 

In the other two workload cases, however, MLDB did, in fact, perform better with regards to 
energy consumption. In the service workload, MLDB consumed roughly 3000 less kW of energy 
than either the conventional backfilling algorithm or the dynamic backfilling algorithm and 
roughly 6000 less kW of energy than either the round robin algorithm or random algorithm. 
Moreover, MLDB still managed to achieve 100.00 SLA fulfillment in the service workload. 

Slightly less impressive, but still notable is that MLDB performed best with regards to energy 
consumption in the heterogeneous workload. MLDB consumed roughly 1000 less kW of energy 
than either the conventional backfilling algorithm or the dynamic backfilling algorithm and 
roughly 4500 less kW of energy than either the round robin algorithm or random algorithm. 
However, unlike the service workload, this decreased energy consumption comes at the cost of 
decreased SLA fulfillment. In the heterogeneous workload, MLDB achieved 98.63 SLA 
fulfillment, while conventional backfilling achieved 99.50 SLA fulfillment and dynamic 
backfilling achieved 99.59 SLA fulfillment. 

From the results, it is clear that MLDB offers better performance than both the round robin 
algorithm and random algorithm, as expected. However, it is less clear whether MLDB should be 
preferred to either the conventional backfilling algorithm or the dynamic backfilling algorithm. 
On the one hand, MLDB has a clear performance advantage in the service workload and 
heterogeneous workload with regards to energy consumption. However, MLDB performs 
significantly worse in the case of grid workload. Furthermore, the advantage in the 
heterogeneous workload comes with the cost of slightly less SLA fulfillment than either 
conventional backfilling or dynamic backfilling (98.63 compared to 99.50 and 99.59). 
Ultimately, this allows us to conclude that MLDB is clearly better than the naïve algorithms, 
round robin and random, but is only better than the conventional backfilling and dynamic 
backfilling algorithms under certain conditions, such as service workload and heterogeneous 
workload without extreme need for the difference in SLA fulfillment. 

3.4 QoS and Specificity 

In each of the previous subsections, we have focused on broad approaches to energy efficiency. 
In this section, however, we will take a look at the work in [Chen13], which offers a more fine 
grained approach to determining energy efficiency in cloud computing. In order to do this, 
[Chen13] proposes using autoregressive moving-average model with exogenous inputs model 
(ARMAX) and ANN. In particular, the goal is to expand the traditional ARMAX and ANN 
algorithms to new sensitivity aware algorithms, sensitivity aware ARMAX (S-ARMAX) and 
sensitivity aware ANN (S-ANN), in order to obtain the highest possible QoS with the minimal 
energy expenditure by capturing the sensitivity on inputs for more fine grained results. 

In order to measure the results obtained by each of the algorithms in a more fine grained way, 
[Chen13] focused on three particular attributes: (1) availability; (2) response time; and (3) 
throughput. The results are compiled together in Table 1, in which the two newly extended ML 
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algorithms, S-ANN and S-ARMAX, are compared to the conventional ML algorithms, ANN and 
ARMAX. 

Table 1: Comparison of S-ANN, S-ARMAX, ANN, and ARMAX (see [Chen13]) 
Symmetric Mean Absolute Percentage Error of Prediction 

QoS S-ANN 
ANN 

S-ARMAX 
ARMAX 

per-service per-application per-service per-application 
Response Time 6.97% 12.76% 31.72% 11.43% 15.08% 34.03% 
Throughput 11.14% 16.88% 35.28% 7.99% 13.22% 37.82% 
Availability 0.96% 0.38% 1.36% 0.01% 0.01% 1% 

From Table 1, we can see that both S-ANN and S-ARMAX offer clear advantages to both ANN 
and ARMAX, respectively in regards to response time and throughput and perform on par with 
ANN and ARMAX in regards to availability, depending on whether ANN and ARMAX are run 
per-service or per-application. Indeed, even when only running per-service, both S-ANN and S-
ARMAX clearly outperform their conventional counterparts. For example, in regards to response 
time, S-ANN’s error of prediction was 6.97 whereas ANN’s error of prediction was 12.76 per-
service (and 31.72 per-application); likewise, S-ARMAX’s error of prediction was 11.43 
whereas ARMAX’s error of prediction was 15.08 per-service (and 34.03 per-application. 

In comparing the two sensitive aware algorithms, however, there is no clear winner. While S-
ANN outperforms S-ARMAX in terms of response time (6.97 compared to 11.43), S-ARMAX 
outperforms S-ANN in terms of throughput and availability (7.99 compared to 11.14 and 0.01 
compared to 0.96, respectively). This demonstrates that S-ARMAX appears to perform better in 
conditions with more stable QoS, whereas S-ANN performs better in more dynamic conditions, 
with a more volatile QoS. 

As a result of the fine grained approach adopted by [Chen13], the advantages and disadvantages 
of the particular algorithms in question become more clear. While ANN and ARMAX offer the 
best error of prediction for availability per-service, they perform worse than S-ANN and S-
ARMAX for availability per-application and worse than S-ANN and S-ARMAX for response 
time and throughput for both per-service and per-application. However, the decision of 
implementing S-ANN or S-ARMAX is more difficult and is dependent upon the particular 
conditions at hand. For more dynamic conditions, S-ANN performs better, and for more stable 
conditions, S-ARMAX performs better. 

3.5 Summary 

In this section, we’ve looked at a variety of approaches that aim to reduce overall energy 
consumption while maintaining sufficient QoS and SLA fulfillment by either turning off idle 
machines or by consolidating work among machines (in order to turn off idle machines). We 
started by looking at the greedy algorithm implemented by [Chase01], which provided a more 
dynamic mapping of energy consumption to activity level and demonstrated an overall 29% 
decrease in energy consumption. We then looked at a number of backfilling algorithms and 
compared them to naïve algorithms like random assignment and round robin assignment. We 
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saw that, generally, the backfilling algorithms outperformed the naïve algorithms, but it was 
unclear whether the proposed algorithm, MLDB, was superior to the other two backfilling 
algorithms, conventional backfilling and dynamic backfilling, due to their performance being 
dependent upon particular conditions. This then motivated an examination of a more fine grained 
study of algorithms, for which we turned to [Chen13], in which ARMAX and ANN algorithms 
were used and measured in regards to a number of characteristics, where we saw that for more 
dynamic conditions, S-ANN performs better, where for more stable conditions, S-ARMAX 
performs better. 

4. Security in Cloud Computing and ML 
In this section we’ll step away from the discussions about resource allocation (as seen in sections 
2 and 3) and focus, instead on the ways in which ML can aid in the security of cloud computing. 
With the increase of overall data in the cloud, there has also been an increase of sensitive data in 
the cloud, motivating the need for higher security in cloud computing [Whitworth14]. This 
section will serve as an examination of various approaches proposed to improve cloud security 
via better threat detection. We will first start with a general approach in which to determine 
threats via summation of risk levels. We will then move to more advanced approaches to 
determine threats which make use of signature detection and anomaly detection in order to 
produce a hybrid model for threat detection. 

4.1 General Algorithm for Trust Levels 

In terms of encryption, one of the most straightforward ways to enable or deny access within the 
cloud is to enforce some system of trust levels. In such a system, trust levels are dynamically 
allocated to any participant within the cloud system and their privileges are assigned according to 
their determined trust level. 

One such trust level algorithm is given in [Whiteworth14], in which the trust level is just a 
summation of all risk levels associated with the particular relationship in question, as seen in 
Equation 1 (with β representing the overall trust level and α representing the risk associated with 
each particular characteristic implicit in the relationship). 

Equation 1: Trust Level 

 

For each particular risk, α, the total risk associated with that characteristic is then calculated by 
having a weighted value, w, multiplied by the mitigation level, c, thereby producing a risk value 
that is weighted by importance as well as potential consequences, as we see in Equation 2. 

Equation 2: Risk Value 
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By using this calculation of risk level, and in conjunction with the calculation of overall trust 
level via summing risk levels, each agent in the cloud is able to be associated with a particular 
degree of trust, thereby enabling privileges for that particular agent in addition to restricting 
access for that particular agent to certain features of the cloud. 

In this section, we’ve taken a brief look into one way in which trust level can be calculated, 
namely via some general algorithm with weighted values for particular attributes that are then 
combined in order to produce an overall trust level. However, moving forward this offers very 
little advice and can become overly cumbersome in a complex environment in which 
characteristics are not necessarily known beforehand and therefore are not capable of being 
assigned a reliable weight.  

To fix this, we can turn to two other methods, named signature detection and anomaly detection. 
In signature detection, agents are identified by their particular signature – as a result, intruders or 
other malicious agents are easily identified as potential risks if they have a history of malicious 
activity. However, signature detection is limited in that it is generally unable to detect threats 
whose signatures have not yet been identified [Bhat13][Gander13]. As a result, anomaly 
detection is often used. Anomaly detection determines potential risks based on an agent’s 
deviation from standard behavior, thereby painting it as an “anomaly” (and therefore a potential 
threat). The disadvantage to anomaly detection is that it suffers from a high false positive rate, in 
which it identifies particular benign agents as malicious [Bhat13]. Consequently, the two 
methods – signature detection and anomaly detection – are often used in conjunction to create a 
hybrid approach in which malicious signatures are detected and stored (for use in repeat and 
static circumstances) and anomaly detection is used for more dynamic situations (where 
signature detection has no data). 

4.2 Naïve Bayes Tree and Random Forest 

In this section, we will focus on a hybrid method for threat detection that makes use of Naïve 
Bayes Tree (NBT) and Random Forest (RF), as outlined in [Bhat13]. The idea behind this 
approach is to first generate a classification pattern from training sets and then determine 
anomalies based on the classification pattern and similarity of features for each connection in the 
classification. As a result, we require extensive data sets in order to generate an accurate 
classification. To resolve this issue, [Bhat13] used data from the KDD Cup ’99 data set 
[KDD09]. Additionally, the dataset was divided into subclasses based on the particular type of 
attack, as seen in Table 2. 

Table 2: Types of Attack Present in KDD Dataset 
Class of Attack Attacks in Dataset 
Probe Ipsweep, Nmap, Portsweep, Satan 
Denial of Service 
(DoS) Back, Land, Neptune, Pod, Smurf, Teardrop 

User to Root (U2R) Buffer_overflow, Loadmodule, Perl, Rootkit 
Remote to Local 
(R2L) 

Ftp_write, Guess_passwd, Imap, Multihop, Phf, Spy, Warezclient, 
Warezmaster 
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From this dataset, [Bhat13] proposed to implement their method via use of both front-end and 
back-end processing, as seen in Figure 11. Essentially, the front-end is used to do the necessary 
pre-processing in addition to basic feature construction in order to accommodate (1) those 
algorithms which require pre-processing; and (2) those algorithms that require an already 
constructed feature set. On the back-end, the features are then reduced in order to create models, 
which are used to signal the anomaly detection system, which, in turn, signal the alarm for an 
intruder. 

 
Figure 11: Processing Model from [Bhat13] 

After the learning stage (which used the KDD datasets), [Bhat13] tested the model and measured 
performance based on percent accuracy and false positive rate. The model was then compared to 
the performance of a similar, competing model, which uses RF and K-Nearest Nodes (KNN) 
algorithms. The results of both models are displayed in Table 3. 

Table 3: Comparing Performance of NBT + RF and RF + KNN 
Classifier Accuracy False Positive 
NBT + RF 99.0% 2.0% 
RF + KNN 94.7% 12.0% 

From the results, we can clearly see that the proposed method, using both NBT and RF, obtains 
better results both in regards to accuracy (99.0 to 94.7) as well as false positive rate (2.0 to 12.0). 
It is important to note that not only does the proposed method reduce the false positive rate, it 
does so dramatically; this is particularly important given the high false positive rate implicit in 
anomaly detection and demonstrates a significant step forward for any method planning on using 
anomaly detection for threat detection. However, it is also important to note that although the 
proposed method outperformed the RF and KNN method, [Bhat13] failed to compare the results 
to a wider variety of competing methods. This could have been due to a lack of competing 
methods or else a lack of relevance between the competing methods and the proposed methods, 
but is nonetheless unfortunate and is important to note. 
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In this section, we took a brief look at one way in which a hybrid method for threat detection 
could be constructed that made use of both signature detection and anomaly detection. More 
specifically, the method proposed by [Bhat13] uses NBT and RF in order to generate a classifier, 
from which we are able to better determine anomalies. We have also seen that this method 
improves upon already existing methods that rely solely on RF and KNN, but do not have 
sufficient data to make further conclusions about the performance of the proposed method 
compared to other ML algorithms. 

4.3 Framework to Detect Semantic Gaps and Anomalies 

In this section, we will focus on a proposed framework as seen in [Gander13] that emphasizes 
the identification of semantic gaps and anomalies in order to detect threats. Specifically, we will 
look at the ways in which semantic gaps are proposed to aid in threat detection as well as the 
process by which one may make conclusions from such a framework.  

In order to detect semantic gaps, and therefore identify potential anomalies and threats, one must 
first specify a particular domain specific language (DSL) in which to work. The DSL is 
imperative, since it is used to better base the results generated by signature detection and 
anomaly detection, via specified workflows and monitoring rules present in the DSL. Once the 
DSL has been specified, the rules generated by the DSL allow for easier detection of semantic 
gaps, since such rules specify the necessary information in order to identify agents, allowing for 
signature detection to more correctly identify particular agents as malicious or benign. 

From here, anomalies can be detected using ML techniques by taking advantage of the particular 
profiles gathered by the workflow by dividing each profile into four categories: (1) service; (2) 
user; (3) host; and (4) workflow. Each sub-profile is then used in order to gain insight as to the 
nature of the potential behavior associated with that particular sub-profile. Service profiles, for 
example, are used to determine fluctuations in activity as compared to past history and other 
profiles, whereas user profiles are used in order to monitor specific behavior, more generally, in 
order to prevent data theft [Gander13]. 

Going even further, each sub-profile can be further divided into particular time tracks: 
immediate, hourly, or monthly. Each of these time tracks allows for further classification of 
profiles, and allow for detection of anomalous behaviors not just in relation to other profile, but 
in relation to other profiles over time as well as one’s own profile over time, issues which may 
not have been adequately handled by the model presented by [Bhat13]. 

Once these profiles have been gathered and classified, they can be analyzed via the clustering of 
fingerprints. Such a clustering essentially maps all of the particular profiles (and each of the 
profile’s particular characteristics) and then compares each feature of each profile to the general 
cluster(s) formed. Outliers are then detected using some form of the Euclidian metric as seen in 
Equation 3 (by using each fingerprint to create a vector, v). 

Equation 3: Example Euclidian Metric 
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Moreover, in this model, once the outliers have been detected, the model can then make further 
relations among the outliers. This allows for the model to better learn potential threats (by 
connecting patterns among threats) as well as (hopefully) decreasing the rate of false positives by 
potentially finding connections among benign outliers that successfully identify such outliers as 
benign, due to some particular characteristic that the malicious profiles, in fact, contain. 

Unfortunately, however, the model proposed in [Gander13] was just proposed as a framework 
and so had not been fully implemented or tested, either in isolation or in relation to other, 
competing methods. Nevertheless, the framework outlined in this section offered further insight 
as to how the currently implemented methods may improve their models via further specificity, 
either by reducing their framework to a particular DSL in order to identify semantic gaps or else 
by storing and classifying subdivisions of data corresponding to characteristics similar to profile 
type and/or time frame. 

4.4 Summary 

In this section, we have looked at the various proposed methods for detecting threats in cloud 
computing. We first started with a general algorithm, which provided a guideline for how threats 
could be determined by a calculated trust level via various risk levels. From this, we then turned 
to a proposed method in which NBT and RF were used, in conjunction with an already available 
dataset, in order to train a model to detect anomalies. And although this model outperformed 
another, competing model, further comparison was not made to other models, leaving the 
strength of the proposed method a bit questionable. Finally, we turned to a proposed framework 
by which threat levels can be better determined by narrowing the scope of focus to a specific 
DSL. Once this is done, we can then add specificity by having particular profile categories and 
time frames in order to better classify the profiles and detect anomalies. Consequently, while 
there is no clear method for security in cloud computing, the proposed models provide promising 
starting points for future work and offer insights as to the ways in which future work might 
proceed with regards to implemented algorithms and scope of specificity. 

5. Conclusion 
In this paper, we have looked at a variety of ways in which ML applications can be used to 
improve cloud computing. We started by looking at ML techniques for dynamic resource 
management, with particular focus on predictions of required VM size. We found that the two 
proposed techniques, SVM and ANN, both outperformed LR in most cases, and the 
determination of which of the two methods to use is situation dependent. We then turned to look 
at ML techniques for more efficient use of resources, particularly in order to save energy, by 
turning off idle machines and consolidation of workloads. Here, we again found that although the 
proposed methods outperformed the naïve approach(es), choosing between the proposed 
methods required further specificity that is situation dependent. Finally, we concluded with a 
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discussion of security in cloud computing. We started with a generic algorithm for determining 
trust levels, from which more advanced techniques could build upon. One such technique, using 
NBT and RF, demonstrated improved performance but was not adequately compared to other 
methods in order to achieve a decisive conclusion. Another technique was proposed merely as a 
framework and so was not able to be tested, but nevertheless offered intriguing perspectives for 
future work to build upon. 
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• MLDB - machine learning dynamic backfilling 
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• QoS - quality of service 
• R2L - remote to local 
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• RUBiS - Rice University Bidding System 
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• S-ARMAX - sensitivity aware ARMAX 
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• SVM - support vector machine 
• U2R - user to root 
• VM - virtual machine 
• VMs - virtual machines 
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