
Networking Protocols for Internet of Things

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-13/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

- 6LowPAN
 - > Adaptation Layer
 - > Address Formation
 - > Compression
- RPL
 - > RPL Concepts
 - > RPL Control Messages
 - > RPL Data Forwarding

Note: This is part 2 of a series of class lectures on IoT. MQTT is covered in other parts.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

IEEE 802.15.4

- Wireless Personal Area Network (WPAN)
- □ Allows mesh networking.Full function nodes can forward packets to other nodes.
- A PAN coordinator (like WiFi Access Point) allows nodes to join the network.
- Nodes have 64-bit addresses
- □ Coordinator assigns 16-bit short address for use during the association
- Maximum frame size is 127 bytes
- More details in CSE 574 wireless networking course http://www.cse.wustl.edu/~jain/cse574-10/index.html

6LowPAN

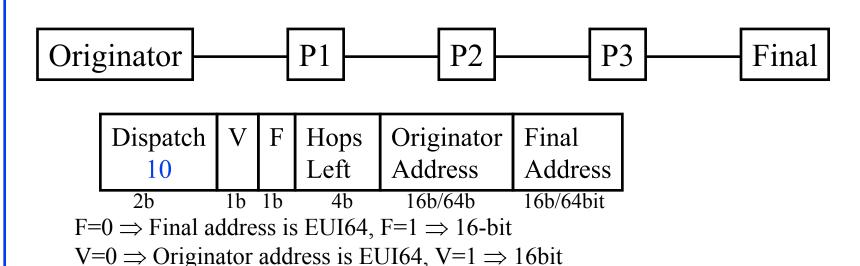
- □ IPv6 over Low Power Wireless Personal Area Networks (6LowPAN)
- To compress IPv6 header for low power IoT devices
- ☐ Issues:
 - Maximum Transmission Unit (MTU) at least 1280 bytes IEEE 802.15.4 standard packet size is 127 bytes

- > Address Resolution: 128b or 16B IPv6 addresses.802.15.4 devices use 64 bit (no network prefix) or 16 bit addresses
- ➤ Optional mesh routing in datalink layer.
 ⇒ Need destination and intermediate addresses.
- > MAC-level retransmissions versus end-to-end
- > Similar issues apply to power line and fieldbus

Ref: G. Montenegro, et al., "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," RFC 4944, Sep 2007, http://tools.ietf.org/pdf/rfc4944
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/
©2013 Raj Jain

6LowPAN Adaptation Layer

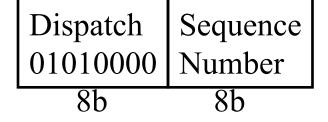

- Optional hop-by-hop ack feature of 15.4 is used but the max number of retransmissions is kept low (to avoid overlapping L2 and L4 retransmissions)
- □ IPv6 Extension Headers: 8b *or less* dispatch ⇒ header type
 - 1. Mesh addressing header (2-bit dispatch=10)
 - 2. Hop-by-hop LowPAN Broadcast header (8-bit dispatch=01010000)
 - Destination Processing Fragment header (5-bit dispatch=11100 or 11101)
- □ IPv6 address formation
- □ IPv6 and UDP compression headers

Frame Control	Seq. #	Adrs	[Security]	Disp bits	Ext Hdr	Disp bits	Ext Hdr	Disp bits	Ext Hdr	IPv6 Payload
2B	1B	0-20B	0-21B	-		-		-		

Ref: O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2013, 344 pp., ISBN: 9781119994350 (Safari Book)
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/ ©2013 Raj Jain

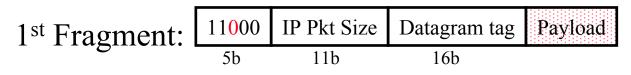
Mesh Addressing Header

- □ **Dispatch** = $10 (2 \text{ bits}) \Rightarrow \text{Mesh Addressing Header}$
- MAC header contains per-hop source and destination
- Original source and destination addresses are saved in Mesh addressing header
- A 4-bit hops-left field is decremented at each hop



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/


6LowPAN Broadcast Header

- For Mesh broadcast/multicast
- A new sequence number is put in every broadcast message by the originator

6LowPAN Fragment Header

- □ Dispatch = 11x00 (5 bits) ⇒ Fragment Header
- □ Full packet size in the first fragment's fragment header
- □ Datagram tag = sequence number
 - ⇒ Fragments of the same packet
- ☐ Fragment Offset in multiples of 8 bytes

Other Fragments:

	11 <mark>1</mark> 00	IP Pkt Size	Datagram tag	Datagram Offset	Payload
•	5b	11b	16b	8b	

Address Formation

□ Ethernet addresses: 48 bit MAC

		Organizationally Unique ID (OUI)	
1b	1b	22b	24b

□ **IEEE 802.15.4 Addresses**: 64 bit Extended Unique Id (EUI)

		Organizationally (OLU)	
Multicast	Local	Unique ID (OUI)	Assigned
1b	1b	22b	40b

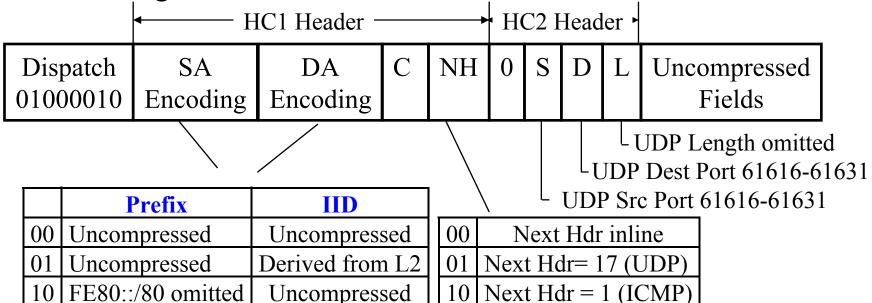
- Local bit was incorrectly assigned. L=1 ⇒ Local but all-broadcast address = all 1's is not local IETF RFC4291 changed the meaning so that L=0 ⇒ Local The 2nd bit is now called Universal bit (U-bit)
 - ⇒ U-bit formatted EUI64 addresses
- □ Link-Local IPv6 address = FE80::U-bit formatted EUI64

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

Address Formation (Cont)

- **■** Example:
 - > EUI64 Local Address = 40::1 = 0100 0000::0000 0001
 - > U-bit formatted EUI64 = 0::1
 - IPv6 Link-local address = FE80::1 = 1111 1110 1000 0000::1
- □ IEEE 802.15.4 allows nodes to have 16-bit short addresses and each PAN has a 16-bit PAN ID.


 1st bit of Short address and PAN ID is Unicast/Multicast The 2nd bit of Short Address and PAN ID is Universal/Local. You can broadcast to all members of a PAN or to all PANs.
- □ IPv6 Link Local Address = FE80 :: PAN ID : Short Address Use 0 if PAN ID is unknown.

 2nd bit of PAN ID should always be zero since it is always local.
 - $(2^{nd} \text{ most significant} = 6^{th} \text{ bit from right})$

Stateless Compression

- □ Called **HC1-HC2 compression** (not recommended)
- □ IP version field is omitted
- Flow label field if zero is omitted and C=1
- \Box Only 4b UDP ports are sent if between 61616-61631 (F0Bx)
- UDP length field is omitted

FE80::/64 omitted | Derived from L2

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

Next Hdr = 6 (TCP)

Context Based Compression

- ☐ HC1 works only with link-local addresses
- Need globally routable IPv6 addresses for outside nodes
- □ IPHC uses a 3b dispatch code and a 13-bit base header

Dis 011	1	TF	NH	Hop Limit	CID	SAC	SAM	M	DAC	DAM	SCI	DCI	Uncompressed IPv6 fields
3b 2b 1b 2b 1b 1b 2b 4b 4b Source Adr Mode Source/Dest Context IDs if CID=1 Next Header Source Adr Compression Multicast Destination							; IDs if CID=1 ation						
	LowPAN_NHC uncompressed (00				limit		C SAM C DAM	Addı	Address				
	1, 64, 255				_	0	00	No c	No compression				
00	EC	ECN+DSCP+4b pad+						0	01	First 64-bits omitted			
	20	0b Flow label (4 Bytes)					0	10	First 112 bits omitted				
01		ECN +2b pad + 12b Flow						0	11	1281	bits om	itted. Get from L2	
		abel (2 Bytes), DSCP omitted						1	00	Unsp	pecified	Address ::	
10		ECN+DSCP (1B), Flow label omitted					1	1	01	First 64 bits from context			
						4	1	10	First 112 bits from context				
11	11 ECN+DSCP+Flow label omitted					1	11	1281	bits fro	m context and L2			

Ref: O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2013, 344 pp., ISBN: 9781119994350 (Safari Book)
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/ ©2013 Raj Jain

Context Based Compression (Cont)

- ☐ If the next header uses LowPAN_NHC
 - > For IPv6 base extension headers:

	1110	IPv6 Ext Hdr ID (EID)		NH	Uncompressed Fields	Next Hdr
•	4b		3b	1b	•	
·				J = 0	Uncompressed	
op	-by-Hop (1 = I	LowPAN NHC	encoded	

EID	Header
0	IPv6 Hop-by-Hop Options
1	IPv6 Routing
2	IPv6 Fragment
3	IPv6 Destination Options
4	IPv6 Mobility Header
5	Reserved
6	Reserved
7	IPv6 Header

LowPAN NHC UDP Header:

11110	C	P
5b	1b	2b
Checksun	n on	nitte

00	All 16-bits in line
01	1 st 8-bits of dest port omitted
10	1 st 8-bits of src port omitted
	1 st 12-bits of src & dest omitted

Ref: J. Hui and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks," IETF RFC 6282, Sep 2011, http://tools.ietf.org/pdf/rfc6282

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

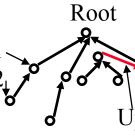
6LowPAN: Summary

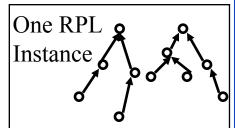
- □ 3 New Headers:
 - > Mesh addressing: Intermediate addresses
 - > Hop-by-Hop: Mesh broadcasts
 - > Destination processing: Fragmentation
- □ Address Formation: 128-bit addresses by prefixing FE80::
- **□** Header compression:
 - > HC1+HC2 header for link-local IPv6 addresses
 - > IPHC compression for all IPv6 addresses

Routing Protocol for Low-Power and Lossy Networks (RPL)

- Developed by IETF Routing over Low-Power and Lossy Networks (ROLL) working group
- Low-Power and Lossy Networks (LLN) Routers have constraints on processing, memory, and energy.
 - ⇒ Can't use OSPF, OLSR, RIP, AODV, DSR, etc
- □ LLN links have high loss rate, low data rates, and instability ⇒ expensive bits, dynamically formed topology
- Covers both wireless and wired networks
 Requires bidirectional links. May be symmetric/asymmetric
- □ Ideal for n-to-1 (data sink) communications, e.g., meter reading
 1-to-n and 1-to-1 possible with some extra work.
- Multiple LLN instances on the same physical networks

Ref: T. Winder, Ed., et al., "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550, Mar 2012, https://ietf.org/doc/rfc6550/

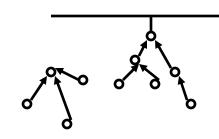

RPL Concepts


- Directed Acyclic Graph (DAG): No cycles
- **Root**: No outgoing edge
- **Destination-Oriented DAG (DODAG): Single** root
- **Up**: Towards root
- **Down**: Away from root
- Objective Function: Minimize energy, latency, ...
- Rank: Distance from root using specified objective
- Rank=1 **RPL Instance**: One or more DODAGs. A node may belong to multiple RPL instances. Rank=
- **DODAG ID:** IPv6 Adr of the root
- **DODAG Version**: Current version of the DODAG. Every time a new DODAG is computed with the same root, its version incremented

http://www.cse.wustl.edu/~iain/cse570-13/

DAG

DODAG



RPL Concepts (Cont)

- □ Goal: Reachability goal, e.g., connected to database
- □ **Grounded**: Root can satisfy the goal
- □ **Floating**: Not grounded. Only in-DODAG communication.

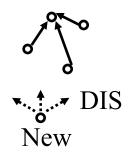
- □ Sub-DODAG: Sub tree rooted at this node
- **Storing**: Nodes keep routing tables for sub-DODAG
- Non-Storing: Nodes know only parent.Do not keep a routing table.

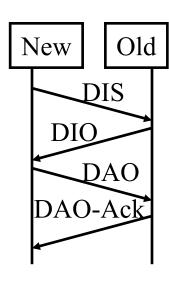
RPL Control Messages

1. DODAG Information Object (DIO):

- Downward RPL instance multicasts
- Allows other nodes to discover an RPL instance and join it

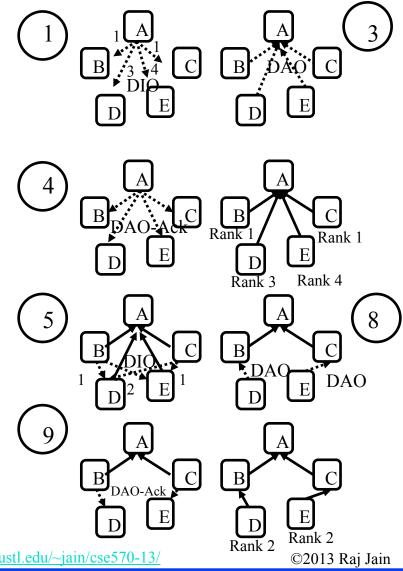
2. DODAG Information Solicitation (DIS):


Link-Local multicast request for DIO (neighbor discovery). Do you know of any DODAGs?


Destination Advertisement Object (DAO):

- From child to parents or root.
- Can I join you as a child on DODAG #x?
- DAO Ack: Yes, you can! Or Sorry, you cant!
- **Consistency Check**: Challenge/response messages for security

Ref: S. Kuryla, "RPL:IPv6 Routing Protocol for Low Power and Lossy Networks," http://cnds.eecs.jacobs-university.de/courses/nds-2010/kuryla-rpl.pdf


http://www.cse.wustl.edu/~jain/cse570-13/ Washington University in St. Louis

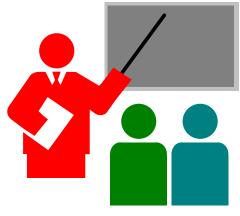
DODAG Formation Example

- A multicasts DIOs that it's member of DODAG ID itself with Rank 0.
- B, C, D, E hear and determine that their rank (distance) is 1, 1, 3, 4, respectively from A
- B, C, D, E send DAOs to A. 3.
- A accepts all
- B and C multicast DIOs
- D hears those and determines that its distance from B and C is 1, 2
- E hears both B, C and determines that its distance from B and C is 2, 1
- D sends a DAO to B E sends a DAO to C
- B sends a DAO-Ack to D C sends a DAO-Ack to E

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

RPL Data Forwarding


- □ Case 1: To the root (n-to-1)
 - > Address to root and give to parent
- □ Case 2: A to B
 - > 2A: Storing (Everyone keeps a routing table)
 - □ Forward up from A to common parent
 - □ Forward down from common parent to B
 - > 2B: Non-storing (No routing tables except at root)
 - □ Forward up from A to root
 - □ Root puts a source route and forwards down
- □ Case 2: Broadcast from the root (1-to-n)
 - > 2A: Storing (everyone knows their children)
 - □ Broadcast to children
 - > 2B: Non-Storing (Know only parents but not children)
 - □ Root puts a source route for each leaf and forwards

RPL Summary

- 1. An RPL instance consists of one or more DODAGs
- DIO are broadcast downward, DAOs are requests to join upward DIS are DIO solicitations DAO-ack are responses to DAO
- 3. Non-storing nodes do not keep any routing table and send everything upwards toward the root

Summary

- 1. 6LowPAN is designed for IPv6 over IEEE 802.15.4 Frame size and address sizes are primary issues Header compression is the key mechanism
- 2. RPL is designed primarily for data collection
 No assumption about IEEE 802.15.4 or wireless or frame size
 Routing is the primary issue
 Forming a spanning tree like DODAG is the solution

Reading List

- O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2013, 344 pp., ISBN: 9781119994350 (Safari Book)
- □ G. Montenegro, et al., "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," RFC 4944, Sep 2007, http://tools.ietf.org/pdf/rfc4944
- □ J. Hui and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks," IETF RFC 6282, Sep 2011, http://tools.ietf.org/pdf/rfc6282
- □ T. Winder, Ed., et al., "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550, Mar 2012, https://ietf.org/doc/rfc6550/
- S. Kuryla, "RPL: IPv6 Routing Protocol for Low Power and Lossy Networks,"
 http://cnds.eecs.jacobs-university.de/courses/nds-2010/kuryla-rpl.pdf

Wikipedia Links

- □ http://en.wikipedia.org/wiki/6LoWPAN
- □ http://en.wikipedia.org/wiki/IEEE_802.15.4
- □ http://en.wikipedia.org/wiki/MAC address
- □ <u>http://en.wikipedia.org/wiki/IPv6</u>
- □ http://en.wikipedia.org/wiki/IPv6_address
- □ http://en.wikipedia.org/wiki/Organizationally_unique_identifier
- □ http://en.wikipedia.org/wiki/IPv6 packet
- □ http://en.wikipedia.org/wiki/Link-local_address

References

- N. Kushalnagar, et al., "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals", IETF RFC 4919, Aug 2007, http://www.rfc-editor.org/rfc/pdfrfc/rfc4919.txt.pdf
- E. Kim, et al., "Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)," IETF RFC 6568, Apr 2012, http://www.rfc-editor.org/rfc/pdfrfc/rfc6568.txt.pdf
- E. Kim, et al., "Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing," IETF RFC 6606, May 2012, http://www.rfc-editor.org/rfc/pdfrfc/rfc6606.txt.pdf
- Z. Shelby, et al., "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs), IETF RFC 6775, Nov. 2012, http://www.rfc-editor.org/rfc/pdfrfc/rfc6775.txt.pdf

References (Cont)

- □ "Routing Requirements for Urban Low-Power and Lossy Networks," IETF RFC 5548, May 2009, https://ietf.org/doc/rfc5548/
- "Industrial Routing Requirements in Low-Power and Lossy Networks," IETF RFC 5673, Oct 2009, https://ietf.org/doc/rfc5673/
- "Home Automation Routing Requirements in Low-Power and Lossy Networks," IETF RFC 5826, Apr 2010, https://ietf.org/doc/rfc5826/
- "Building Automation Routing Requirements in Low-Power and Lossy Networks," IETF RFC 5867, Jun 2010, https://ietf.org/doc/rfc5867/
- □ "The Trickle Algorithm," IETF RFC 6206, Mar 2011, https://ietf.org/doc/rfc6206/
- "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550, Mar 2012, https://ietf.org/doc/rfc6550/
- "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks," IETF RFC 6551, Mar 2012, https://ietf.org/doc/rfc6551/
- "Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)," IETF RFC 6552, Mar 2012, https://ietf.org/doc/rfc6552/

References (Cont)

- □ "The Minimum Rank with Hysteresis Objective Function," IETF RFC 6719, Sep 2012, https://ietf.org/doc/rfc6719/
- □ "Reactive Discovery of Point-to-Point Routes in Low-Power and Lossy Networks," IETF RFC 6997, Aug 2013, https://ietf.org/doc/rfc6997/
- "A Mechanism to Measure the Routing Metrics along a Point-to-Point Route in a Low-Power and Lossy Network," IETF RFC 6998, Aug 2013, https://ietf.org/doc/rfc6998/

Acronyms

□ 6LowPAN IPv6 over Low Power Wireless Personal Area Network

□ AODV Ad-hoc On-demand Distance Vector

□ CC Consistency Check

DA Destination Address

DAG Directed Acyclic Graph

DAO DODAG Advertisement Object

DIODODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acyclic Graph

DSR Dynamic Source Routing

■ EUI Extended Unique Id

□ HC Header Compression

□ ICMP IP Control Message Protocol

□ ID Identifier

□ IEEE Institution of Electrical and Electronic Engineers

http://www.cse.wustl.edu/~jain/cse570-13/

Acronyms (Cont)

□ IETF Internet Engineering Task Force

□ IID Interface Identifier

□ IoT Internet of Things

□ IP Internet Protocol

□ IPHC IP Header Compression

□ IPv6 Internet Protocol Version 6

□ LLN Low-Power and Lossy Networks

MAC Media Access Control

MTU Maximum Transmission Unit

OLSR On-Demand Link State Routing

OSPF Open Shortest Path Forwarding

PAN
Personal Area Network

□ RIP Routing Information Protocol

□ ROLL Routing over Low-Power and Lossy Networks

□ SA Source Address

Acronyms (Cont)

□ TCP Transmission Control Protocol

UDP
User Datagram Protocol

■ WiFi Wireless Fidelity

■ WPAN Wireless Personal Area Network