# Introduction to Internet of Things



Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: <a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>



- 1. What are "Things" and why IoT is important
- 2. Recent Protocols for IoT
- 3. IEEE 1901 Power Line Communication (PLC)
- 4. IEEE 1905.1 Convergent Digital Home Network

Note: This is part 1 of a series of class lectures on IoT. MQTT, 6LowPAN, and RPL are covered in other parts.

### Machine-to-Machine (M2M)

- 1.1 Billion smart phones
- □ 244 Million smart meters
- 487 Million e-readers and tablets
- 2.37 Billion networked office devices
- 86 Million medical devices
- 45 Million connected automobiles
- □ 547 Million connected appliances
- 105 Million connected military devices
- 431 Million information technology devices
- 45 Million supervisory control and data acquisition (SCADA)
- □ 5+ Billion other (non-phone/tablet/e-reader) electronic devices



Ref: H. Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, 2013, 365 pp., ISBN: 9781439892992 (Safari Book)

### **Internet of Things**

- □ Only 1% of things around us is connected. Refrigerator, car, washing machine, heater, a/c, garage door, should all be connected but are not.
- □ From 10 Billion today to 50 Billion in 2020 Should include processes, data, things, and people.
- □ \$14 Trillion over 10 years
  ⇒ Third in the list of top 10 strategic technologies by Gartner (After Mobile devices, Mobile Apps, but before Clouds, ...)
- a.k.a. Internet of Everything by Cisco Smarter Planet by IBM Industrial Internet by GE Cyber-Physical Systems (CPS)

Internet of European Things (more popular in Europe)

Ref: "Gartner Identifies Top 10 Strategic Technologies,"

http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html

Ref: J. Bradley, "The Internet of Everything: Creating Better Experiences in Unimaginable Ways," Nov 21, 2013,

http://blogs.cisco.com/ioe/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways/#more-131793

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Raj Jain

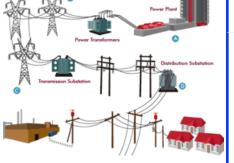
# **Research Funding for IoT**

- Networking and Information Technology Research and Development (NITRD)
  - > Group of 15 Federal agencies: NSF, NIH, NASA, DOE, DARPA, ONR, ...
  - > Recommends supplement to the president's annual budget
- □ CPS is one of the areas recommended by NITRD starting 2012
  - > Models, tools, and architectures for highly dependable CPS
  - Safety models and designs for CP medical systems
  - Cloud enablement of CPS
  - > Software verification and validation for large scale CPS, e.g., next generation air transportation

### **Cyber Physical Systems**

- CPS: Tight coupling between computing and physical components
  - ⇒ Smart infrastructure
- Industrial Control Systems:
  - > Supervisory Control and Data Acquisition (SCADA):
    Over a large area spanning thousands of square kilometers,
    e.g., power grid, gas pipelines
  - > Distributed Control Systems (DCS):
    Within one location, e.g., wastewater treatment plant
  - Programmable Logic Controllers:
    Devices used in SCADA and DCS, e.g., assembly lines

Ref: Workshop on Future Directions in CPS Security, July 2009, <a href="http://www.ee.washington.edu/faculty/radha/dhs\_cps.pdf">http://www.ee.washington.edu/faculty/radha/dhs\_cps.pdf</a>
Washington University in St. Louis


\$\text{Louis}\$ \$\text{http://www.cse.wustl.edu/~jain/cse570-13/}\$ \$\text{Q2013 Raj Jain}\$

# CPS (Cont)

- □ Electric Grid: Smart Grid
- Water Supply and Waste Water
- □ Chemical: agricultural, pharmaceuticals, and other chemicals
- □ Transportation: Smart Bridges, Smart Cars, In-Aircraft systems
- **Healthcare**: Robotic assistance for the Elderly, tele-operational surgical robots
- Commercial Buildings

### **Smart Grid**

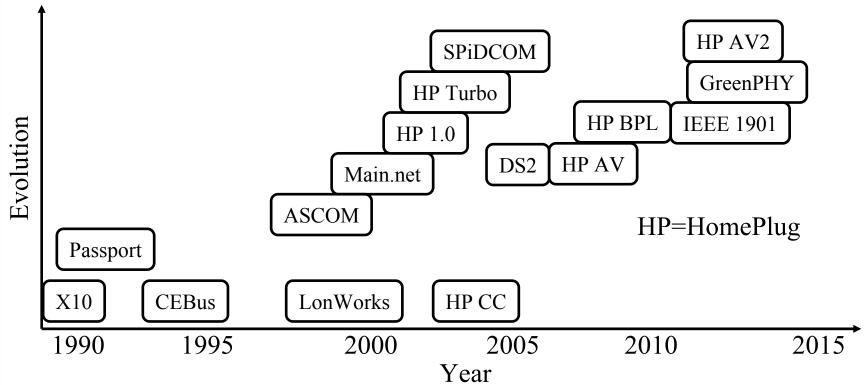
- \$4B funding in Economic Recovery Act
- Smart Grid can
  - > Identify surges, outages, and failure points
  - > Contain damage and reroute power around failure
  - > Accommodate new off-grid energy sources
  - > Load balance dynamically
  - > Be less vulnerable to accidental or malicious harms
- Meters that provide features needed for energy control
- Efficient cryptographic communication between substations and control centers
- Protocols for publishing/subscribing of system data



Ref: Workshop on Future Directions in CPS Security, July 2009, <a href="http://www.ee.washington.edu/faculty/radha/dhs\_cps.pdf">http://www.ee.washington.edu/faculty/radha/dhs\_cps.pdf</a>
Washington University in St. Louis

<a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>
©2013 Raj Jain</a>

### **Recent Protocols for IoT**


- 1. Powerline Communications (PLC)
- 2. IPv6 over Low Power Wireless Personal Area Network (6LowPAN)
- 3. Routing Protocol for Low Power and Lossy Networks (RPL)
- 4. ZigBee Smart Energy 2.0
- 5. ETSI M2M Architecture
- 6. MQ Telemetry Transport (MQTT)

### **Legacy IoT Protocols**

- BACnet
- LonWorks
- ModBus
- □ KNX
- ZigBee
- □ Z-Wave
- M-Bus
- □ ANSI CI-12
- Device Language Message Specification (DLMS)/Company Specification for Energy Metering (COSEM)

### **Power Line Communication (PLC)**

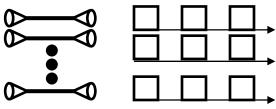
- Used in 1950 for remote ignition and lighting of street lights. 100 Hz and 1 kHz signals over electrical wires
- Two way systems using 3-148.5 kHz for reading electric meters, and home automation, alarms etc.



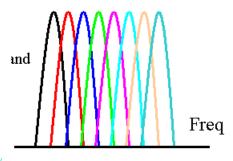
Ref: H. Chaouchi, "The Internet of Things: Connecting Objects," Wiley, Jun 2010, 288 pp., ISBN: 9781848211407 (Safari Book)
Washington University in St. Louis

<a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>
©2013 Raj Jain</a>

### **Broadband Over Power Lines (BPL)**


- □ High-speed internet connection using power lines (like DSL)
- □ IEEE 1901-2011 Broadband over Power Line standard
- Not cost competitive with optical fiber or DSL
   ⇒ Suitable for remote locations
- High-frequency signal cannot pass through transformers and so the signal has to be bypassed using a repeater
- In US 1 transformer per house ⇒ Very expensive
   In Europe: 1 transformer per 10-100 houses ⇒ More cost effective
- Radio frequency interference with existing wireless services is avoided using OFDM

Ref: http://en.wikipedia.org/wiki/Broadband over power lines

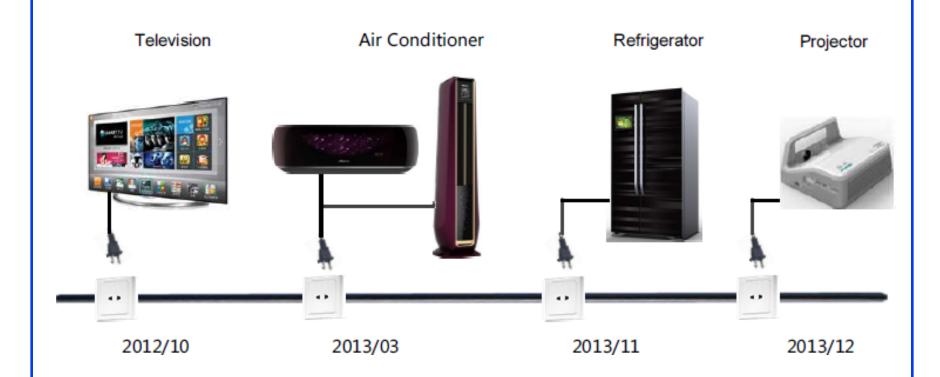

### **OFDM**

- Orthogonal Frequency Division Multiplexing
- □ Ten 100 kHz channels are better than one 1 MHz Channel
  - ⇒ Multi-carrier modulation





- □ Frequency band is divided into 256 or more sub-bands.
   Orthogonal ⇒ Peak of one at null of others
- Each carrier is modulated with a **BPSK** (2bps/Hz), **QPSK** (4 bps/Hz), **16-QAM** (8bps/Hz), **64-QAM** (16 bps/Hz) etc depending on the noise (Frequency selective fading)
- □ Used in 802.11a/g, 802.16, Digital Video Broadcast handheld (DVB-H)
- Easy to implement using FFT/IFFT




### **HomePlug**

- □ HomePlug 1.0
- HomePlug AV
- HomePlug AV2
- HomePlug GP



### **Connected Home**



Ref: HomePlug Alliance, "HomePlug Connected Home Summits 2013 Presentations,"

http://www.homeplug.org/tech/whitepapers/Connected Home Summits 2013.pdf

Washington University in St. Louis <a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>

©2013 Raj Jain

### **HomePlug AV**

- □ Leading industry consortium for power line communications 90% of PLC devices use HomePlug
- □ 1.8 MHz to 30 MHz spectrum =  $28 \text{ MHz} \Rightarrow 20 \text{ to } 200 \text{ Mbps}$
- Multipath distortion
- □ Orthogonal Frequency Division Multiplexing (OFDM): Using 1155 carriers at 24.414 kHz spacing of which 917 are used for signal. Rest as pilots.
- Adaptive bit loading: Each carrier is modulated based on the noise level and multipath at that frequency.

  2-bits/symbol to 10 bits/symbol.
- Tone Maps: Each receiver keeps a table of signal strengths from each of the other receivers ⇒ n-1 tone maps in a n-device system

Ref: HomePlug Alliance, "HomePlug AV White Paper," <a href="http://www.homeplug.org/tech/whitepapers/HPAV-White-Paper\_050818.pdf">http://www.homeplug.org/tech/whitepapers/HPAV-White-Paper\_050818.pdf</a>
Washington University in St. Louis

<a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>
©2013 Raj Jain</a>

# HomePlug AV (Cont)

- Robust OFDM (ROBO) mode for highly reliable transmission. The same information is transmitted on 2-5 subcarriers using a low-bit rate modulation
- ☐ Use only Line-neutral pair (ground is not used)
- Four channel access priorities
- MAC is similar to that of WiFi
  - ⇒ Carrier Sense Multiple Access (CSMA).
- □ All devices part of the same trust domain form a "AV Logical Network (AVLN)."
- □ All members of the AVLN share a Network Membership Key 128-bit AES.
- Each AVLN has a **central coordinator (CCo)**

neutral

ground

# HomePlug AV (Cont)

- CCo transmits beacons containing schedule
- Long best effort transmissions declare their queues to CCo and use a pre-allocated **persistent shared CSMA** region
- □ Short best effort transmissions use **non-persistent CSMA** region.
- Real-time traffic uses periodic time division multiple access (TDMA) allocation in the **contention-free** period
- Before video transmission, the transmitter tests the channel for achievable throughput. Helps determine the required transmission interval per beacon period

| Beacon | Persistent Shared | Non-Persistent | Non-Persistent | Persistent   | <br>Persistent   |
|--------|-------------------|----------------|----------------|--------------|------------------|
| Region | CSMA Region       | Local CSMA     | Local CSMA     | Allocation 1 | <br>Allocation n |

### **HomePlug AV Security**

- A station can participate in a AVLN if it has the Network membership key (NMK).
  - A station with multiple keys can participate in multiple AVLNs.
- All devices have a default NMK and so can form the network. Users should program the devices to use specific NMK.
- Once a devices has a NMK, it will be given the network encryption key which is used to encrypt the data.
- ☐ If there are multiple networks on the same wire, CCos coordinate their transmission schedules

### **HomePlug AV2**


- □ Gigabit networking using home powerline wiring. Peak PHY rate of 1.256 Gbps. 600 Mbps net throughput.
- Can transmit multiple HD video streams
- Compatible with HomePlug AV devices on the same wires
- 1. Additional Spectrum: 2MHz-86MHz (84 MHz)
- 2. Multiple-input Multiple-output (MIMO): transmissions using two wires with three-wire configuration (Line-Neutral, Line-Ground, Neutral-Ground)
- 3. Beam forming: Bit loading for each transmitter
- 4. Lower overhead: Shorter packet delimiter and delay acks.
- 5. Efficient notching: Of noisy carriers

# HomePlug AV2 (Cont)

- 6. Repeating: Signal is demodulated and re-modulated at intermediate devices
- 7. **Better coding**: 12 bps/Hz and aggressive code rates (8/9)
- 8. Power Control: Manage transmission power to enhance coverage and throughput
- 9. Power Save: Stations can declare sleep periods. Other transmit only when the destination is awake.

### HomePlug GreenPHY

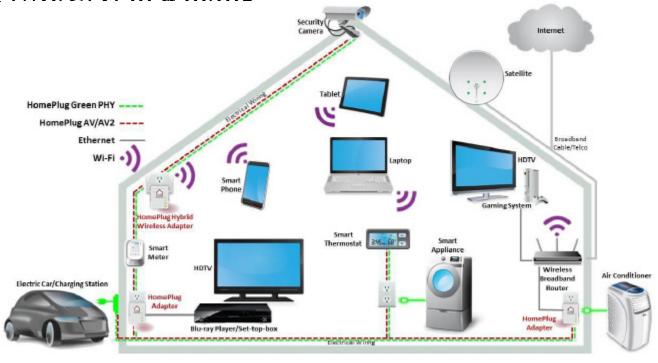
- □ Designed for **home area network (HAN)** for monitoring and control of energy consuming/controlling devices including electric vehicle charging.
- Low cost. Low power. Low data rate version of HomePlug AV.



Ref: HomePlug Alliance, "HomePlug GreenPHY White Paper," <a href="http://www.homeplug.org/tech/whitepapers/HomePlug Green\_PHY\_whitepaper\_121003.pdf">http://www.homeplug.org/tech/whitepapers/HomePlug Green\_PHY\_whitepaper\_121003.pdf</a>
Washington University in St. Louis

<a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>
©2013 Raj Jain</a>

# HomePlug GP (Cont)


- HomePlug GP is a profile of **IEEE 1901-2010** standard for Powerline Networks and is compatible with HomePlug AV and HomePlug AV2.
- □ 28 MHz  $\Rightarrow$  256 kbps to 10 Mbps using only one modulation No tone maps.
- Use 75% less power than HomePlug AV. 75% less bill of materials
- Devices coordinate their sleep cycle and may sleep for  $2^n$  beacon intervals, n=1,...,10
- HomePlug GP 1.1 adds new power management and features for electric vehicles. Secure billing is possible at a public charging station.

Ref: HomePlug Alliance, "HomePlug GreenPHY Overview," <a href="http://www.homeplug.org/tech/whitepapers/HomePlug">http://www.homeplug.org/tech/whitepapers/HomePlug</a> GreenPHY Overview.pdf
Washington University in St. Louis

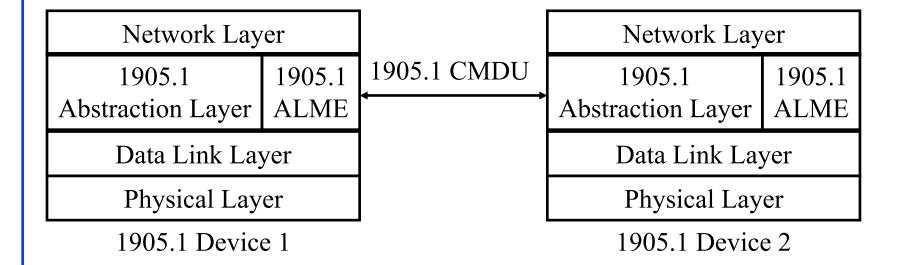
<a href="http://www.cse.wustl.edu/~jain/cse570-13/">http://www.cse.wustl.edu/~jain/cse570-13/</a>
©2013 Raj Jain</a>

### **Convergent Digital Home Network**

- □ IEEE 1905.1-2013 Convergent Digital Home Network for Heterogeneous Technologies
- □ Combined use of WiFi, HomePlug, Ethernet, Multimedia over Coax (MoCA) in a home



Ref: http://en.wikipedia.org/wiki/IEEE 1905


# **Convergent Digital Home (Cont)**

- Entire home looks like a single network with automated provisioning, management, and operation
- Allows a device to aggregate throughput from multiple interfaces
- A link can be used fallback when another link fails
- An abstraction layer is used to exchange Control Message Data Unit (CMDU) among 1905.1 compliant devices
- No changes to underlying technologies is required.

| Network Layer            |        |             |      |  |  |  |  |  |
|--------------------------|--------|-------------|------|--|--|--|--|--|
| 1905.1 Abstraction Layer |        |             |      |  |  |  |  |  |
| 802.3                    | 802.11 | PLC<br>1901 | MoCA |  |  |  |  |  |

### IEEE 1905.1 Management

□ 1905.1 compliant devices speak Abstraction Layer Management Entity (ALME) Protocol



# IEEE 1905.1 Management (Cont)

- □ ALME has messages for
  - Neighbor discovery,
  - > Topology exchange,
  - Topology change notification,
  - > Measured traffic statistics exchange,
  - > Flow forwarding rules, and
  - > Security associations
- HomePlug AV2 can be used as a backbone for Wi-Fi
- Existing IEEE 802.1 bridging protocols are used for loop prevention and forwarding

### **IEEE 1905.1 Security and Configuration**

- Security Setup:
  - > **Push Button**: Press buttons on new and existing devices
    The new device gets the keys from the existing device
  - > User can configure passphrase/key in the new device
  - > NFC: User touches the new device with a NFC equipped smart phone which is existing member of the network
- Auto configuration:
  - New Access Points (APs) can get configuration information from existing APs
- □ The certification program for IEEE 1905.1 is called "nVoy"
   Connects disparate networks = Network Diplomat = Network Envoy
   ⇒ nVoy
- Qualcomm Atheros products implementing IEEE 1905.1 are called **Hy-Fi** (for Hybrid Fidelity)

### **Netricity**

- Long-range outside-the-home PLC for smart grid applications
- □ Certification for IEEE 1901.2 Low Frequency, Narrowband Powerline Communications Standard is called "Netricity"



### **Fieldbus**

- □ Family of protocols for *short-range* real-time distributed industrial control systems standardized as IEC 61158
- □ Fieldbus connects programmable logic controllers to sensors, actuators, electric motors, console lights, switches, valves, and contractors
- □ Hundreds of nodes are connected to a single microcontroller using a *single* cable, e.g., 250 nodes on 13.2 km cable⇒ Highlevel Datalink Control (HDLC)-like master-slave communication with polling



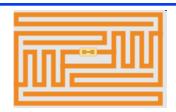
Ref: H. Zhou, "The Internet of Things in the Cloud: A middleware Perspective," CRC Press, 2013, 366pp., ISBN:9781439892992 (Safari Book) Ref: http://en.wikipedia.org/wiki/Fieldbus

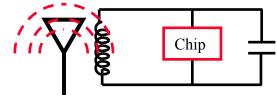
Washington University in St. Louis

### Fieldbus (Cont)

- Collection of 8 different incompatible "Types"
  - Foundation Fieldbus H1
  - 2. ControlNet
  - 3. PROFIBUS
  - 4. P-NET
  - 5. FOUNDATION Fieldbus High Speed Ethernet
  - 6. SwiftNet
  - 7. WorldFIP
  - 8. Interbus
- Only PHY, Datalink, and application layer
  - ⇒ No routing ⇒ Need Ethernet/IP from microcontroller

### **Industrial Ethernet**


- Same as regular Ethernet but with rugged connectors and designed for extended temperature/humidity environment
- □ Full duplex links (no CSMA/CD)
- Optical fibers (electrical interference)
- Min frame size of 64 byte may be too big for some applications


### **IEEE 1451**

- □ Set of smart transducer interface for sensors and actuators
- □ Transducer electronic data sheets (TEDS) is a memory device that stores transducer id, calibration, correction data, and manufacturer information
- Allows access to transducer data regardless of wired or wireless connection
- ightharpoonup XML based  $\Rightarrow$  Allows manufacturers to change the contents

Ref: <a href="http://en.wikipedia.org/wiki/IEEE\_1451">http://en.wikipedia.org/wiki/IEEE\_1451</a>

### **Smart Cards**





- $\square$  Smart  $\Rightarrow$  With a processor
- Radio Frequency ID (RFID) is a subset
- Reader queries using RF, ID sends its ID using RF
- Used for retail loss prevention, toll collection, bus/rail passes, passports
- May have battery (active), no battery (passive), small battery (semi-passive)
- Get power from the reader by inductive or capacitive coupling
- □ Standards: ISO 14443 (Proximity ~10cm), ISO15693 (vicinity ~50cm), ECMA 340 (near field communication transceiver)
- More details in CSE 574 wireless networking course http://www.cse.wustl.edu/~jain/cse574-10/index.html

### **Smart Card Security Issues**

- 1. Skimming: Read w/o knowledge of owner
- 2. Eavesdropping or sniffing: Man-in-the-middle
- 3. Data Tampering: Erasing or changing data
- 4. Spoofing: Mimic another source
- 5. Cloning: Making a copy of data
- 6. Malicious Code: Insertion of executable virus code
- 7. Denial of Service: Overwhelm the receiver's capacity
- 8. Killing: Disable
- 9. Jamming: Interfere with a strong signal
- 10. Shielding: Mechanically prevent reading

Ref: H. Zhou, "The Internet of Things in the Cloud: A middleware Perspective," CRC Press, 2013, 366pp., ISBN:9781439892992 (Safari Book) Ref: <a href="http://en.wikipedia.org/wiki/Radio-frequency">http://en.wikipedia.org/wiki/Radio-frequency</a> identification#Security concerns

18-35

Washington University in St. Louis <a href="http://www.cse.w">http://www.cse.w</a>



- 1. Only 1% of things are connected  $\Rightarrow$  Big opportunity for IoT
- 2. Smart Grid and Energy management is leading the change.
- 3. HomePlug Powerline communication can provide up to 600 Mbps over electrical power lines
- 4. IEEE 1905.1 allows combining WiFi, Ethernet, and PLC, and Cable communication in a home
- 5. Fieldbus and Industrial Ethernet are used in manufacturing environments.
- 6. Smart cards including RFID allow short distance communication using active, passive, or semi-passive modes

### **Reading List**

- HomePlug Alliance, "HomePlug AV White Paper," http://www.homeplug.org/tech/whitepapers/HPAV-White-Paper\_050818.pdf
- HomePlug Alliance, "HomePlug AV2 Technology,"
  <a href="http://www.homeplug.org/tech/whitepapers/HomePlug\_AV2\_whitepaper\_1309">http://www.homeplug.org/tech/whitepapers/HomePlug\_AV2\_whitepaper\_1309</a>
  <a href="http://www.homeplug.org/tech/whitepapers/HomePlug\_AV2\_whitepaper\_1309">http://www.homeplug.org/tech/whitepapers/HomePlug\_AV2\_whitepaper\_1309</a>
- HomePlug Alliance, "HomePlug Connected Home Summits 2013
   Presentations,"
   <a href="http://www.homeplug.org/tech/whitepapers/Connected\_Home\_Summits\_2013.p">http://www.homeplug.org/tech/whitepapers/Connected\_Home\_Summits\_2013.p</a>
   df
- □ HomePlug Alliance, "HomePlug GreenPHY Overview,"

  <a href="http://www.homeplug.org/tech/whitepapers/HomePlug">http://www.homeplug.org/tech/whitepapers/HomePlug</a> GreenPHY Overview.p

  df
- □ HomePlug Alliance, "HomePlug GreenPHY White Paper,"

  <a href="http://www.homeplug.org/tech/whitepapers/HomePlug\_Green\_PHY\_whitepapers/">http://www.homeplug.org/tech/whitepapers/HomePlug\_Green\_PHY\_whitepapers/</a>

  <a href="mailto:r\_121003.pdf">r\_121003.pdf</a>
- J. Bradley, "The Internet of Everything: Creating Better Experiences in Unimaginable Ways," Nov 21, 2013, <a href="http://blogs.cisco.com/ioe/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways/#more-131793">http://blogs.cisco.com/ioe/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways/#more-131793</a>

### Wikipedia Links

- □ http://en.wikipedia.org/wiki/IEEE 1905
- □ <a href="http://en.wikipedia.org/wiki/IEEE\_1901">http://en.wikipedia.org/wiki/IEEE\_1901</a>
- □ <a href="http://en.wikipedia.org/wiki/Broadband">http://en.wikipedia.org/wiki/Broadband</a> over power lines
- □ <a href="http://en.wikipedia.org/wiki/Power\_line">http://en.wikipedia.org/wiki/Power\_line</a> communication
- □ <a href="http://en.wikipedia.org/wiki/HomePlug">http://en.wikipedia.org/wiki/HomePlug</a>
- □ <a href="http://en.wikipedia.org/wiki/Cyber-physical-system">http://en.wikipedia.org/wiki/Cyber-physical-system</a>
- □ http://en.wikipedia.org/wiki/HomePlug Powerline Alliance
- □ <a href="http://en.wikipedia.org/wiki/MIMO">http://en.wikipedia.org/wiki/MIMO</a>
- □ <a href="http://en.wikipedia.org/wiki/SCADA">http://en.wikipedia.org/wiki/SCADA</a>
- □ http://en.wikipedia.org/wiki/Smart grid
- □ <a href="http://en.wikipedia.org/wiki/G.hn">http://en.wikipedia.org/wiki/G.hn</a>
- □ <a href="http://en.wikipedia.org/wiki/Orthogonal frequency-division multiplexing">http://en.wikipedia.org/wiki/Orthogonal frequency-division multiplexing</a>
- □ <a href="http://en.wikipedia.org/wiki/IEEE">http://en.wikipedia.org/wiki/IEEE</a> <a href="mailto:Smart\_Grid">Smart\_Grid</a>
- □ <u>http://en.wikipedia.org/wiki/Fieldbus</u>
- □ <a href="http://en.wikipedia.org/wiki/Industrial\_Ethernet">http://en.wikipedia.org/wiki/Industrial\_Ethernet</a>
- □ http://en.wikipedia.org/wiki/IEEE 1451

# Wikipedial Links (Cont)

- http://en.wikipedia.org/wiki/List\_of\_broadband\_over\_power\_line\_deployments
- □ <a href="http://en.wikipedia.org/wiki/Qualcomm\_Atheros">http://en.wikipedia.org/wiki/Qualcomm\_Atheros</a>
- □ <a href="http://en.wikipedia.org/wiki/G.9972">http://en.wikipedia.org/wiki/G.9972</a>
- □ <a href="http://en.wikipedia.org/wiki/Home network">http://en.wikipedia.org/wiki/Home network</a>
- → <a href="http://en.wikipedia.org/wiki/SPiDCOM">http://en.wikipedia.org/wiki/SPiDCOM</a>
- □ <a href="http://en.wikipedia.org/wiki/Smart\_meter">http://en.wikipedia.org/wiki/Smart\_meter</a>
- □ <a href="http://en.wikipedia.org/wiki/IEC\_62196">http://en.wikipedia.org/wiki/IEC\_62196</a>

### References

- H. Chaouchi, "The Internet of Things: Connecting Objects," Wiley, Jun 2010, 288 pp., ISBN: 9781848211407 (Safari Book)
- H. Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, 2013, 365 pp., ISBN: 9781439892992 (Safari Book)
- □ NITRD, <a href="http://www.nitrd.gov/">http://www.nitrd.gov/</a>
- □ NITRD, "FY 2014 Supplement to the President's Budget," <a href="http://www.nitrd.gov/Publications/PublicationDetail.aspx?pubid=48">http://www.nitrd.gov/Publications/PublicationDetail.aspx?pubid=48</a>
- "Gartner Identifies Top 10 Strategic Technologies,"

  <a href="http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html">http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html</a>
- Workshop on Future Directions in CPS Security, July 2009, <a href="http://www.ee.washington.edu/faculty/radha/dhs\_cps.pdf">http://www.ee.washington.edu/faculty/radha/dhs\_cps.pdf</a>

### **Acronyms**

6LowPAN IPv6 over Low Power Wireless Personal Area Network

AES Advanced Encryption Standard

ALME Abstraction Layer Management Entity

**Access Points** APs

AVAudio-Visual

AVLN Audio-Visual Logical Network

**Broadband Over Power Lines** BPL.

**BPSK** Binary Phase-Shift Keying

Central Coordinator CCo

**CMDU** Control Message Data Unit

CP Cyber Physical

Cyber Physical Systems CPS

CSIA Cyber Security and Information Assurance

CSMA Carrier Sense Multiple Access

DARPA Defense Advance Research Project Agency

**DIstributed Control Systems** DCS

Department of Energy http://www.cse.wustl.edu/~jain/cse570-13/ Washington University in St. Louis

### Acronyms (Cont)

□ DVB-H Digital Video Broadcast handheld

□ FFT Fast Fourier Transform

□ GE General Electric

□ GP GreenPHY

GreenPHY Green Physical Layer

□ HAN Home Area Network

□ HCSS High Confidence Software and Systems

□ HD High Definition

HDLC High-Level Datalink Control

HEC High-End Computing

■ HPAV HomePlug Audio-Visual

□ IEEE Institution of Electrical and Electronic Engineers

□ IFFT Inverse Fast Fourier Transform

□ IM Information Management

□ IoT Internet of Things

□ IPv6 Internet Protocol V6

Washington University in St. Louis Information Technology wustl.edu/~jain/cse570-13/

©2013 Raj Jain

### **Acronyms (Cont)**

□ kHz Kilo Hertz

□ LSN Large Scale Networking

MAC Media Access Control

MHz
Mega Hertz

MIMO Multiple-input Multiple-output

MoCA Multimedia over Coax

MQTT MQ Telemetry Transport

□ NASA National Aeronautical and Space Administration

□ NFC Near Field Communication

■ NIH National Institute of Health

■ NITRD Networking and Info Technology Res and Development

□ NMK Network Membership Key

□ NSF National Science Foundation

OFDM Orthogonal Frequency Division Multiplexing

ONR Office of Naval Research

PHY Physical Layer

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Raj Jain

# Acronyms (Cont)

PLC Power Line Communication

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RFID Radio Frequency Identification

□ RPL Routing Protocol for Low Power and Lossy Networks

SCADA Supervisory Control and Data Acquisition

SDP Software Design and Productivity

□ TDMA Time division multiple access

□ TEDS Transducer electronic data sheets