
http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 1

Performance Measurement of BLAST as a
MERCATOR Application

Stephen Timcheck, stimcheck (at) wustl (dot) edu (A paper
written under the guidance of Prof. Raj Jain) Download

Abstract
With the increase in parallel computing applications, there has been a need to construct libraries
which support said applications. MERCATOR is a framework running on NVIDIA CUDA
which aims to make constructing applications for GPUs more easy. This study examines the
overhead incurred from MERCATOR in MERCATOR applications and how they effect
execution time. We found that changing the topology of the MERCATOR application does
indeed effect the execution time of the application.

Table of Contents
• 1. Introduction
• 2. Background

o 2.1. SIMD Parallelism
o 2.2. MERCATOR Overview
o 2.3. BLAST Overview

• 3. Experimental Design
o 3.1. System Definition
o 3.2. Services
o 3.3. Metrics
o 3.4. System Parameters

• 4. Evaluation Technique
• 5. Performance Study

o 5.1. Results
o 5.2. Analysis

• 6. Conclusion
• 7. Future Work
• References
• Acronyms

Keywords: General Purpose GPU Programming, MERCATOR, BLAST, SIMD, Performance
Evaluation, Data Flow, CUDA, Overhead

1. Introduction

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 2

With the ever increasing amount of data in the world, applications need to be able to sift through
information to determine what is and is not important. One such route developers have taken is
to utilize parallelism to acquire relevant data or calculate meaningful information from vast
quantities of data. In particular, the use of parallel computing platforms such as GPUs have
become a popular means of utilizing big data [NVIDIA17a]. In this experiment, we explore the
usage of NVIDIA GPUs with CUDA using the MERCATOR framework and how the overhead
of said framework effects performance.

2. Background
Parallel computing can take many paradigms including MISD, MIMD, and SIMD [Ghosh06].

2.1. SIMD Parallelism

SIMD stands for Single Instruction Multiple Data. By definition, SIMD processors apply a single
instruction to multiple data points at once [Ghosh06]. For example, a processor wants to
increment all data points in an array by 1. If the processor uses the SIMD paradigm, then the
processor only needs to execute a single instruction, an addition of 1, which will apply to all
entries in the array. By comparison, most modern day consumer processors are SISD processors,
or single instruction single data, perform a single instruction on a single entry at a time. In the
previous example, the SISD processors would need to increment each entry by 1 individually.
The difference in execution is shown in Figure 1. In this experiment, we utilize a SIMD
processor in the form of NVIDIA GPUs.

Figure 1: SISD vs. SIMD Processor Model

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 3

GPUs, or Graphics Processing Units, are designed for graphics applications as the name would
imply and use a SIMD processing model. These processors have multiple cores working on
different entries at the same time using the same instruction. For our tests, we used the CUDA
architecture, a group of libraries for implementing general purpose applications for NVIDIA
GPUs [NVIDIA17b].

2.2. MERCATOR

MERCATOR is a framework for building applications on the GPU using CUDA developed by
Dr. Stephen Cole. The framework is designed for creating an easy way for developers to
construct efficient implementations of irregular data applications, which are not commonly well
supported on GPUs. Irregular data applications as defined by Dr. Cole are ,"... applications that
exhibit some form of divergent control flow, unbalanced workloads, unpredictable memory
accesses, input-dependent dataflow, and complicated data structure requirements," [Cole 17].

To represent these types of applications, MERCATOR uses Data Flow Graphs. A graph of a
typical application is shown in Figure 2.

Figure 2: MERCATOR Data Flow Graph

These graphs represent the application through nodes, modules, and edges. Nodes are parts of the
application where operations are performed by the GPU. The code each node executes is dictated
by what module they are. In the example above, the first node is of type Module A, the second
and fifth are of type Module B, the third is of type Module C, and the fourth is also of type
Module A. All the nodes of the same module run the same code, but may have different inputs
depending on where they exist in the graph. Finally, the edges connect the nodes together and
define what kind of and how much data travels across it.

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 4

2.3. BLAST

BLAST, or Basic Local Alignment Search Tool, is an application developed for DNA sequence
comparison [Altschul90]. Many implementations have been made of this application due to its
high impact in the field of Genomics, the most notable being NCBI-BLASTN. Various other
groups have used GPUs to accelerate BLAST such as GPU-BLAST with a speedup from NCBI-
BLAST ranging from 3 to 4 on average [Vouzis11].

However, many of the GPU accelerated implementations for BLAST are only built for BLAST.
That is, many of the same design ideas utilized in the construction of BLAST could be used to
develop other irregular data flow applications. This is why we would like to see the viability of
MERCATOR as a general purpose framework for producing efficient high impact applications
such as BLAST on GPUs.

BLAST can be partitioned into 4 modules in MERCATOR: Seed Matching, Seed Enumeration,
Small Extension, and Ungapped Extension. The application graph for MERCATOR is shown in
Figure 3 below.

Figure 3: BLAST application graph in MERCATOR

First, the Seed Matching module takes multiple database strings, in this case 8 DNA bases, and
compares them to a hash table of the query string. This stage determines whether or not the
database sequence exists anywhere in the query sequence.

Second, the Seed Enumeration module takes the database sequences that exist in the query and
determines how many instances of the match exists between the two. For example, a database
string exists in two places in the query. This stage will know that the match exists from the prior

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 5

stage and will iterate over all the instances where the match occurs. All the matches found will
then be sent off to the next stage as points, with starting positions in the query and database.

Next, the Small Extension module extends the points found earlier to include the next 3 bases to
first the left, then the right. If either side of the extension matches, then the match passes to the
following stage.

Finally, the Ungapped Extension module performs a user defined window size extension on the
match. This extension is the same as the previous module, but extends for however long the user
defines, in our case 64 bases to the left and 64 bases to the right. Matches are given a score of +1
and mismatches a score of -3. The module then determines if the maximal score at any point in
the matching process is greater than a user defined value and either discards the match, or stores
the match to be returned to the CPU side of the application for further processing.

From domain knowledge, we know that as the data moves through the BLAST pipeline of
execution, the amount of data shrinks and the execution time increases [Cole17]. Thus, it should
be advantageous to separate all the stages assuming there is no overhead. For our tests, we would
like to see whether or not the overhead of MERCATOR is worth splitting all the stages into
separate modules, or if a unified module containing all the separate module code or some mix of
the two is most optimal for execution time.

3. Experimental Design
In this section, we will discuss the design of the experiment. We will first explore the system
definition and then describe the services, metrics, and parameters of the system. We then will
explore which factors we wish to learn more about.

3.1. System Definition

The system under exploration is a MERCATOR application implementing the BLAST pipeline
described in section 2.3. The study will examine the performance implications of MERCATOR
overhead in the BLAST pipeline.

3.2. Services

The system described offers a single service, finding matches between query and database strings
of DNA bases. As outlined in section 2.3, the BLAST pipeline takes a query string and database
string of DNA bases, and provides the user with the points in the files which match the best.

3.3. Metrics

For this study, we will examine 2 factors:

• Model Type
• Workloads

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 6

Model Type will have 3 levels:

• Unified
• Separate
• Mixed

Workloads will have 2 levels:

• Small
• Large

3.3.1. Model Type

The Model Type describes the topology of the current experiment. As described in section 2.3,
there are 4 modules that exist in the BLAST pipeline. To determine how to properly combine
modules to minimize execution time, we will examine 3 types of application topologies for
BLAST.

The first topology is Unified. This topology has all of the modules combined into one module.
The application graph is shown below in Figure 4. We expect this model type to have the worst
performance for this application.

Figure 4: Unified Model Type of BLAST application

The third and final topology is Mixed. Given that we know from domain knowledge that the
Seed Matching stage filters out almost all non-matches, as well as has the shortest execution
time, we will keep Seed matching in a separate node. The rest of the pipeline will remain

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 7

combined as one node in the application graph as shown in Figure 5. We expect this model type
to potentially have performance gains over the Separate model type due to having less overhead
from infrequently executed later pipeline stages.

Figure 5: Mixed application graph

3.3.2. Workloads

The workloads are two text files containing DNA bases for the application. The application is
built to use 2-bit data representations for the database string and a FASTA format (ASCII
Characters) for the query string. The Small workload uses a 2KB portion of the salmonella
genome as a query and a 2-bit representation of the human chromosome 1 for the database. The
Large workload uses a 100KB portion of the salmonella genome as a query and a 2-bit
representation of the human chromosome 1 for the database.

3.4. System Parameters

Parameters that could effect the system include:

• Model Type
• Workload
• GPU Architecture
• Graphics Card Specifications
• Thread to Work Mapping

For the purposes of this experiment, we can ignore the Graphics Card Specifications and Thread
to Work Mapping. The first can be ignored since we will only be using a single GTX980Ti

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 8

graphics card for testing. In addition, we can ignore the Thread to Work Mapping as we will only
be testing work mapped 1 to 1. This means each thread in the GPU will only be performing
operations on a single data entry at a time. We will also ignore the GPU Architecture as the
application has been developed independent of the architecture.

4. Evaluation Technique
We define our experiment as a Two Factor Full Factorial Design with Replications. This design
will utilize the two factors described in section 3.3, with Factor A being the Model Type and
Factor B being the Workload. We will be using 5 replications of each combination to bring the
total number of experiments to 30. We will be looking at the total execution time on the GPU of
each combination. In addition, since we are examining execution time, we know that the model
is multiplicative, and thus must perform a log transformation to attain accurate results [Jain91].

5. Performance Study
In this section, we will discuss our results and analysis of the execution times for the BLAST
pipeline in relation to Model Type (A) and Workload (B).

5.1. Results

For the results we found each replication measured in Milliseconds (ms) to be as follows in
Table 1:

Data Size Unified Separate Mixed
Small 984.41 604.6 470.26

 986.35 610.4 474.5

 983.89 616.61 473.68

 987.1 598.61 484.06

 989.15 610.04 482.04
Large 1133.2 2497.75 1281.07

 1124.53 2493 1284.57

 1135.93 2490.08 1278.25

 1129.5 2501.46 1275.3

 1136.8 2497.21 1264.81

Table 1: Measured Results

We then perform a log transformation on the dataset since we are examining execution times
[Jain91]. Table 2 shows the results after the log base 10 transformation.:

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 9

Data Size Unified Separate Mixed
Small 2.993176 2.781468 2.672338

 2.994031 2.785615 2.676236

 2.992947 2.790011 2.675485

 2.994361 2.777144 2.684899

 2.995262 2.785358 2.683083
Large 3.054307 3.397549 3.107573

 3.040971 3.396722 3.108758

 3.055352 3.396213 3.106616

 3.052886 3.398194 3.105612

 3.055684 3.397455 3.102025

Table 2: Log Base 10 Transformation on Measured Data

Next, we determine the effects of the Model Types and Workloads in Table 3:

Log10 Models

 Unified Separate Mixed
Row
Sum

Row
Mean

Row
Effect

Workloads Small 2.993955 2.783919 2.678408 8.456283 2.818761 -0.183483

 Large 3.05384 3.397227 3.106117 9.557183 3.185728 0.183483

 Column Sum 6.047795 6.181146 5.784525 18.01347

 Column Mean 3.023898 3.090573 2.892263 3.002244

Column
Effect 0.021653 0.088329 -

0.109982

Table 3: Effects of Model Types and Workloads

Now, we must calculate the effects of the interactions between the Model Types and Workloads
in Table 4:

Interactions Unified Separate Mixed
Small 0.153541 -0.12317 -0.03037
Large -0.153541 0.12317 0.03037

Table 4: Interactions between Model Types and Workloads

Then, we construct the ANOVA Table for the experiment:

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 10

Component Sum
Squared

%
Variation

Degrees of
Freedom

Mean
Squared

F-
Computed

F-Table
(,24)

y 272.0147 30
ybar... 270.4041 1

y - ybar... 1.61059 100 29
Model Type

(A) 0.203668 12.64554 2 0.101834 9572.51 2.54

Workload (B) 1.009985 62.709 1 1.009985 94939.79 2.93
Interaction

(AB) 0.396682 24.62961 2 0.198341 18644.3 2.54

Error (e) 0.000255 0.015852 24 0.000011

Table 5: ANOVA Table

Next, we determine the 90% confidence intervals for the Model Types and Workloads in Table
6:

90% CIs Alpha 90% CIs Beta
Alpha Number Lower Bound Upper Bound Beta Number Lower Bound Upper Bound

1 0.020212 0.023094 1 -0.1845 -0.1825
2 0.086888 0.89769 2 0.182465 0.184502
3 -0.11142 -0.10854

Table 6: 90% Confidence Intervals of Model Types (Alpha) and Workloads (Beta)

Likewise, we determine the 90% confidence intervals for the interactions between the Model
Types and Workloads in Table 7:

90% CIs
Interactions A1 A2 A3

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

B1 0.1521 0.1550 -0.12461 -0.12173 -0.03181 -0.02893
B2 -0.15498 -0.1521 0.121729 0.1246113 0.02893 0.031812

Table 7: 90% Confidence Intervals of Interactions

Finally, we utilize visual tests to ensure that ensure that our experimental model is valid. We first
verify if the errors are normally distributed with a QQ-plot in Figure 6:

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 11

Figure 6: Quantile Quantile Plot

Lastly, we determine if the errors are independent with a plot of Residuals versus Predicted
Responses in Figure 7:

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 12

Figure 7: Residuals Vs Predicted Response

5.2. Analysis

From looking at the results, we can see that our hypothesis that the Mixed model type performed
the best for the Small workload. For the Large workload however, we expected a result similar to
what we achieved. Since the Large workload would contain the most number of matches
between the database and query, the model with the least overhead would perform the fastest,
hence why the Unified model runs the fastest [Cole17]. We have also determined that the
Workloads and Model Type are significant factors at 90% Confidence, and our experiments pass
the F-Test. From Figure 6, we can see that our data is normally distributed and from Figure 7 we
see that the errors are independent. We have also determined that the Workload explains most of
the variation in the model, and is thus the most important factor in the study. The Model type
could also be considered important, but is nowhere near the importance of the Workload.

6. Conclusion
Through this study, we explored the effects of the overhead incurred when using MERCATOR.
We found that in the Small case that our hypothesis of the Mixed implementation performing the
best was true. However, the Large test case resulted in the opposite conclusion, showing the
Unified implementation having the greatest performance. As mentioned before, this was the
expected result, as almost all of the data would not be filtered by each filter, making the
sparseness of the data in the final filters irrelevant to performance.

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 13

7. Future Work
Looking forward, we would like to determine where the threshold of the MERCATOR
framework becomes detrimental to performance. Although we may have obtained a
contradictory result between the Small and Large data sets, it still gives insight into what could
be tested for future overhead in applications such as BLAST in the MERCATOR framework. It
would be interesting to see if one could determine the overhead costs in relation to the total
execution time to allow users to properly reconfigure their code, potentially automatically, to
minimize total execution time for most cases.

References
[Altschul90] S. Altschul et al., "Basic Local Alignment Search Tool," Academic Press Limited,
pp403-410, 1990, https://www.scribd.com/document/266260951/Basic-local-alignment-search-
tool

[Cole17] S. Cole, J. Buhler, "MERCATOR: A GPGPU Framework for Irregular Streaming
Applications," 2017 International Conference on High Performance Computing & Simulation
(HPCS), 2017, pp727-736, http://ieeexplore.ieee.org/document/8035150/

[Ghosh06] "Multiprocessors," A presentation on Flynn's Classification of multiple-processor
machines, http://homepage.divms.uiowa.edu/~ghosh/4-6-06.pdf

[Jain91] R. Jain, "The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling," Wiley-Interscience, New York,
NY, April 1991, ISBN:0471503361.

[NVIDIA17a] "GPU Applications," A portal to various consumer applications using CUDA,
http://www.nvidia.com/object/data-science-analytics-database.html

[NVIDIA17b] "Cuda C Programming Guide," Developers toolkit for CUDA introduction,
http://docs.NVIDIA.com/cuda/cuda-c-programming-guide/#axzz4cZZhMRHt

[Vouzis11] P. Vouzis, N. Sahinidis, "GPU-BLAST: using graphics processors to accelerate
protein sequence alignment," Bioinformatics, Volume 27, Issue 2, 2011, pp182-188,
https://academic.oup.com/bioinformatics/article/27/2/182/285951

Acronyms
BLAST: Basic Local Alignment Search Tool
CUDA: Compute Unified Device Architecture
MERCATOR: Mapping Enumerator
GPU: Graphics Processing Unit
CPU: Central Processing Unit

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html 14

SISD: Single Instruction Single Data
SIMD: Single Instruction Multiple Data

Last Modified: December 15, 2017
This and other papers on latest advances in Performance Analysis and Modeling are available on
line at http://www.cse.wustl.edu/~jain/cse567-17/index.html
Back to Raj Jain's Home Page

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html

	Performance Measurement of BLAST as a MERCATOR Application
	Abstract
	Table of Contents
	1. Introduction
	2. Background
	2.1. SIMD Parallelism
	2.2. MERCATOR
	2.3. BLAST

	3. Experimental Design
	3.1. System Definition
	3.2. Services
	3.3. Metrics
	3.3.1. Model Type
	3.3.2. Workloads

	3.4. System Parameters

	4. Evaluation Technique
	5. Performance Study
	5.1. Results
	5.2. Analysis

	6. Conclusion
	7. Future Work
	References
	Acronyms

