
http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 1

Performance Analysis of the Cilk Locality
Runtime
Ramsay Shuck, ramsay.shuck (at) wustl.edu (A paper written
under the guidance of Prof. Raj Jain) Download

Abstract

Many parallel programming platforms, such as Cilk Plus, implement a work-stealing scheduler
to load-balance parallel computations, since it provides a provably good execution time bound
and performs well in practice. However, most work-stealing schedulers, including the Cilk Plus
scheduler, do not utilize shared caches and memory efficiently. The Cilk Locality runtime was
developed to address the poor locality in the Cilk Plus runtime with the aim of improving overall
performance. In this paper, the performance of the Cilk Locality runtime is compared to the Cilk
Plus runtime using a number of different metrics. The results show that the Cilk Locality runtime
achieves a modest improvement over the Cilk Plus runtime due to improved locality

Keywords: Cilk Plus, Locality, NUMA, Parallel Programming, Work-Stealing, Space-Bounded,
Cache, Work Inflation, Performance Analysis, Scheduling.

Table of Contents
1. Introduction
2. Background

• The Cilk Plus Runtime
• Multiple Deque Structure in the Cilk Locality Runtime
• Restricted Work Stealing in the Cilk Locality Runtime

3. Experimental Evaluation

• Metrics
• Benchmarks and Workloads
• Experimental Evaluation

4. Execution Time Results and Analysis

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 2

• Execution Time Results
• Execution Time Variation Analysis
• Visual Tests

5. Additional Metrics Results and Analysis

• Work Inflation Results
• Scheduling Overhead Results
• Idle Time Results

6. Summary
References
List of Acronyms

1. Introduction
NUMA is a common memory design choice for multiprocessor systems. Memory is distributed
such that a processor has local memory and remote memory to access [Lameter13]. The latency
of memory accesses is therefore dependent on whether or not the memory page table resides in
local or remote memory [Manchanda12]. This can have major performance implications if a
program is repeatedly forced to access remote memory instead of local memory thus making
NUMA locality an important consideration.

Cache locality can also impact performance. Cache locality has a spatial and temporal aspect in
which spatial locality refers to data use involving memory stored in close locations and temporal
locality refers to reuse of data in a short time frame. Improving either increases cache utilization
and decreases the average latency of memory accesses [Blelloch04].

The work in this paper examines how both cache and NUMA locality impact the overall
performance of benchmarks written in the Cilk parallel programming language. The performance
of the Cilk Locality Runtime is compared to the performance of the regular Cilk Runtime to
determine if the changes to the locality runtime improve performance. A number of metrics are
measured to provide insight into the tradeoffs involved in improving locality.

This introduction has introduced NUMA and cache locality and the next section will cover the
two runtimes being evaluated and how they are impacted by locality.

2. Background

2.1 The Cilk Plus Runtime

The Cilk Plus runtime is currently developed and maintained by Intel [Intel13] but was originally
created by MIT [Frigo98]. The main strength of Cilk is its simplicity. A user simply specifies
which functions can be run in parallel with a keyword and the runtime handles all the scheduling.
The runtime utilizes a work-stealing scheduling scheme. Cilk threads, otherwise known as

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 3

workers, are mapped to CPU cores (typically in a one-to-one fashion). Each worker maintains a
double-ended queue or deque to store tasks that it isn't currently working on. If a worker finishes
its current task, it will attempt to pop off the bottom task of its deque. If there is nothing on its
bottom deque, it randomly selects another worker to steal work from. If the worker has tasks to
steal, it takes them off the top of their deque. By popping tasks off the bottom of the deque and
stealing from the top of other workers' deques, it is able to minimize the required amount of
synchronization [Frigo09].

2.2 Multiple Deque Structure in the Cilk Locality Runtime

The Cilk Locality Runtime adheres to most of the same principles as the regular Cilk Runtime
with a couple of notable changes. One change is that instead of having one deque per worker, it
has multiple deques per worker. A deque ostensibly belongs to a level of memory/cache. Tasks
are "pinned" to the deque belonging to the corresponding level of memory/cache that is large
enough to store its task set. By pinning work to the level of cache/memory that is large enough to
store its task set, locality is improved since the possibility that something necessary is evicted
from cache/memory is greatly diminished. This property of pinning work based on task set size
in order to maximize locality is the space-bounded property [Simhadri14].

2.3 Restricted Work Stealing in the Cilk Locality Runtime

Figure 1: Two Socket Diagram

The second major change is that workers are restricted to stealing tasks from deques with they
share cache/memory. If a worker is currently working on the L3 cache level, it can only steal
work from other workers with which it shares an L3 cache. This is illustrated in the two socket
diagram shown in figure 1. If the worker belonging to core 1 decides to steal at the L3 level, it
can only steal from cores 2, 3, and 4 since those are the only cores with which it shares an L3
cache. This further improves locality by avoiding situations in which workers that don't share
cache work on subtasks of the same task such as core 1 stealing from core 5 in Figure 1
[Chen14]. These subtasks likely will share variables and data structures so if these workers don't
share a cache, data will have to ping-pong between the workers' caches as needed [Chen12].
Whereas if the workers shared a cache, all the data needed by both workers would be available in
that cache.

The next section describes how the performance of the runtimes described in this section will be
evaluated.

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 4

3. Experimental Evaluation
This section lays out what experiments were conducted. It describes which metrics, benchmarks,
and workloads were used and explains why they were chosen. All experiments were conducted
using a 32 core machine with 4 sockets each with 8 cores. The CPUs in this machine are 2.2
GHz Intel Xeon E5-4620.

3.1 Metrics

The four metrics that were chosen for this evaluation are execution time, work inflation, idle
time, and scheduling overhead.

Execution time is the overall time it takes to run the benchmarks. It does not include
initialization time, but encompasses everything else pertaining to the running time of the
benchmark. The execution time is what will be used to evaluate which runtime is better. The
other metrics will be used to analyze the running time, but the running time will ultimately
determine which is better.

Work inflation is a measure of how much longer it takes to execute the benchmark in parallel
rather than sequentially. It is a measure of the cumulative time spent executing the benchmark
and it includes everything except the time spent in the runtime [Acar17]. One factor that could
cause work inflation to increase as more cores are used to execute the benchmark is locality.
More cores make it more likely that non-local cache and memory accesses will be incurred
during the execution. The extra overhead from these accesses could cause an increase in work
inflation [Acar17]. We would expect work inflation to be less in the locality runtime due to its
improved locality thus making it an interesting point of comparison.

Whereas work inflation relates to time spent executing user code, scheduling overhead and idle
time relate to time spent in the runtime. Scheduling overhead is a measure of the total time
workers spend on successful steals while idle time measures time spent on failed steals [Acar17].
Both of these measurements should increase in the locality runtime due with the extra overhead
to manage multiple deques increasing the scheduling overhead and the stealing restrictions
increasing the idle time. If the locality runtime performs worse than the regular runtime, it can
likely be attributed to increases in these metrics..

3.2 Benchmarks and Workloads

Four benchmarks, each with three different workloads, will be measured. The benchmarks being
used are matmul, mattranspose, heat, and cilksort. Matmul performs matrix multiplication in a
recursive sub-dividing manner where two randomly generated nxn matrices are multiplied
together and the result is stored in a third matrix. The mattranspose benchmark performs a matrix
transpose operation and follows a similar recursive sub-dividing scheme as the matmul
benchmark. One randomly generated nxn matrix has a transpose operation performed on it and
the result is stored in a second matrix. The heat benchmark measures heat diffusion of a matrix
of cells also in a recursive subdividing scheme. Two nxn matrices are used to store the results
and which matrix holds the current result alternates each iteration. The cilksort benchmark sorts

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 5

an array of size n using a merge sort approach. Two n size arrays are used in the calculation with
the secondary array being used to hold temporary calculations. Three workload sizes are used:
small, medium, and large. Table 1 shows what value of n these sizes correspond to for each
benchmark.

Table 1: Benchmarks and Workloads

3.3 Experimental Evaluation

Every benchmark will be tested for both runtimes for 32 workers which is the maximum for this
system. Since scalability is a primary concern for this system, using all 32 cores on the system
will result in the best comparison point for scalability with this system. Each test will be repeated
5 times and an average will be taken. Measurements for execution time will be conducted
separately but measurements for the other three metrics will be conducted simultaneously. The
measurements for the other three metrics overlap with the execution time so they need to be
measured separately. There isn't such overlap for the other metrics so there should be minimal
harm in measuring them together.

This section has described how the experimental evaluation will be conducted while the next
section will discuss and analyze the results of the experimental evaluation.

4. Results and Analysis
This section graphs and analyzes the execution time data for this experiment. Particular emphasis
is placed on the execution time results since they establish which runtime has better overall
performance.

4.1 Execution Time Results

Figure 2: Execution time comparison between the two runtimes

Figure 2 shows the results for the execution time for the two runtimes running all the
benchmarks. The error bars represent the 90% confidence interval for the five runs. The results

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 6

show that although the locality runtime does exhibit a definitive performance improvement for
matrix transpose benchmark and minor improvement for the heat benchmark, it exhibits similar
performance to the regular runtime for the other two benchmarks. Later analysis of the other
three metrics shed some light on this performance difference.

4.2 Execution Time Variation Analysis

To delve a little deeper into the execution time results, the results were analyzed using the two
factor full factorial design with replications analysis. The additive model is used for this data.
This is typically avoided for execution time analysis but it works for this data given the small
running times.

Table 2: Execution time effects

Table 2 displays a calculation of the effects of the benchmarks and runtimes. The effects found
in table 2 are used to compute the ANOVA table shown in Table 3.

Table 3: ANOVA table for execution time results

The major surprise from this table is how much the benchmarks influence the variation. The
benchmarks are fairly diverse so it is unsurprising that they would influence the results more so
than which runtime was used. However, the amount that they contributed is still surprising given
the significant differences between the runtimes. The ANOVA table is used to compute the
confidence intervals in table 4.

Table 4: 90% Confidence Intervals

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 7

The major takeaway from the confidence intervals is that they are all significant. Table 5 shows
the confidence interval of the difference between the two runtimes.

Table 5: 90% Contrast Table

This shows that the locality runtime performance improvement over the regular runtime is
significant. However, this improvement is still smaller than anticipated.

4.3 Execution Time Visual Tests

Visual tests were conducted to verify the accuracy of the model. Figure 3 shows a predicted
response vs error graph.

Figure 3: Execution time predicted response vs error

This graph does appear to show a decreasing trend in the errors which is cause for concern.
However, given the extremely small size of the errors, it is not unexpected that there would be
some sort of trend so this trend does not necessarily warrant concern [Jain91]. Figure 4 shows a
QQ Plot.

Figure 4: Execution time QQ Plot

The plot does show some deviation from a linear trend at the tails but as with Figure 3, this
concern is diminished by the extremely small size of the errors.

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 8

This section provided a comprehensive analysis of the execution time results. The next section
examines some additional metrics to provide additional information about the strengths and
weaknesses of the two runtimes.

5. Additional Metrics Results and Analysis
Additional metrics were measured to help explain the execution time performance. These metrics
provide additional information as to why the locality runtime achieves slightly better
performance than the regular runtime but also why this results in only a slight performance
improvement.

5.1 Work Inflation Results

Figure 5: Work inflation measurements for both runtimes

Figure 5 shows the results for the work inflation measurements of both runtimes. The work
inflation is calculated by taking the cumulative time the 32 workers spend executing the
benchmark code subtracted by the single worker execution time of the benchmark code. These
measurements of the benchmark code do not include time spent scheduling the computation in
the runtime. The work inflation occurs due to data operations for 32 workers taking more time
since the location of the data is distributed across four sockets. As expected, the work inflation is
better for locality runtime in all four benchmarks. The enhanced locality of the locality runtime
resulted in lower work inflation since the improved locality allowed data accesses to occur more
quickly.

5.2 Scheduling Overhead Results

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 9

Figure 6: Scheduling overhead comparison between the two runtimes

Figure 6 shows the results for the scheduling overhead measurements of both runtimes. The
regular runtime scheduling overhead is worse for all four benchmarks. This contrasts with the
hypothesis that the scheduling overhead would be higher due to the added overhead involved in
maintaining the multiple level deque structure. My hypothesis for why this diverges with the
expected result is that the restricted work stealing reduces the number of successful steals
therefore reducing the total measured scheduling overhead. Since the regular runtime has more
successful steals, it has higher scheduling overhead even though the time spent on each steal is
lower. The large confidence intervals and small measurements do indicate a high variability in
these measurements especially for the heat benchmark measurements. Since work stealing is
random, this variability is not unexpected.

5.3 Idle Time Results

Figure 7: Idle time measurements for both runtimes

Figure 7 shows the results for the idle time measurements of both runtimes. The idle time is
noticeably worse for the locality runtime in all four benchmarks. This is most evident in the
cilksort benchmark where the locality runtime suffers from extremely high idle time. The locality
runtime was expected to do worse since the restricted work stealing scheme increases the
probability that a worker will be unable to find work to steal. However, the magnitude of
disparity is still surprising given that the distribution of work for these benchmarks should be
roughly balanced. Each socket should handle roughly the same amount of work meaning that
workers on all four sockets should have work to steal for nearly the entire duration of the
execution.

This section has analyzed the findings for each metric measured in this experiment. The next
section will summarize these findings and draw conclusions.

6. Summary
The overall results indicate that the locality runtime is slightly better than the regular runtime.
The 90% contrast interval was found to be significant for the execution time experiments. The
work inflation results show that the locality runtime does exhibit better work inflation than the
regular runtime. This supports the hypothesis that the improved locality will result in better work

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 10

inflation. This is most evident in the cilksort and heat results. This is unsurprising since cilksort
and heat appear to be memory bound applications whereas the other benchmarks are more
computation bound.

The scheduling time is lower for the locality runtime which is unexpected given the extra
overhead required to manage the multiple level deque structure. It appears that the improved
scheduling overhead is a result of fewer successful steals in the locality runtime which makes
sense given that the restricted work stealing scheme reduces the number of deques from which to
steal. The results for the idle time mitigate most of the performance gain from the drop in work
inflation and scheduling overhead. This seems to be the reason why the locality runtime does not
exhibit significantly improved execution time performance. Lowering the idle time would be a
possible way to optimize performance for the locality runtime.

References:
1. [Acar17] Umut A. Acar, Arthur Charguerad, Mike Rainey. Parallel Work Inflation,

Memory Effects, and their Empirical Analysis. In Corr, 2017, pages 1-13
https://arxiv.org/pdf/1709.03767.pdf

2. [Blelloch04] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among
threads. In SPAA, 2004, pages 235-244
https://www.cs.cmu.edu/~guyb/papers/BlGi04.pdf

3. [Chen12] Q. Chen, M. Guo, and Z. Huang. CATS: Cache aware task-stealing based on
online profiling in multi-socket multi-core architectures. In ICS, 2012, pages 163-172
http://www.cs.otago.ac.nz/staffpriv/hzy/papers/ics2012.pdf

4. [Chen14] Chen, Q., Guo, M., Guan, H.: Laws: locality-aware work-stealing for multi-
socket multi-core architectures. ICS, 2014, pages 3-12 http://www.cs.sjtu.edu.cn/~guo-
my/PDF/Conferences/C143.pdf

5. [Frigo98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multi- threaded language. In PLDI, ACM, 1998, pages 212-223,
http://supertech.csail.mit.edu/papers/cilk5.pdf

6. [Frigo09] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin.
Reducers and other Cilk++ hyperobjects. In Proceedings of the Twenty-First Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA '09), Calgary,
Canada, August 2009. http://www.fftw.org/~athena/papers/hyper.pdf

7. [Intel13] Intel Corporation. Intel Cilk Plus Language Extension Specification, Version
1.1, 2013. Document 324396-002US.
https://software.intel.com/sites/default/files/m/6/a/3/0/7/37679-
Intel_Cilk_plus_lang_spec_2.htm

8. [Jain91] Raj Jain, "The Art of Computer Systems Performance Analysis", Wiley
Publishers, 1991 Edition, ISBN - 10:0471503363, Mobius

9. [Lameter13] C. Lameter et al. NUMA (Non-Uniform Memory Access): An Overview.
ACM Queue, 11(7):40, 2013, pages 40-51. http://queue.acm.org/detail.cfm?id=2513149

10. [Manchanda12] N. Manchanda and K. Anand. Non-Uniform Memory Access (NUMA).
New York, 1, 2012, pages 1-4
http://www.cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html
https://arxiv.org/pdf/1709.03767.pdf
https://www.cs.cmu.edu/%7Eguyb/papers/BlGi04.pdf
http://www.cs.otago.ac.nz/staffpriv/hzy/papers/ics2012.pdf
http://www.cs.sjtu.edu.cn/%7Eguo-my/PDF/Conferences/C143.pdf
http://www.cs.sjtu.edu.cn/%7Eguo-my/PDF/Conferences/C143.pdf
http://supertech.csail.mit.edu/papers/cilk5.pdf
http://www.fftw.org/%7Eathena/papers/hyper.pdf
https://software.intel.com/sites/default/files/m/6/a/3/0/7/37679-Intel_Cilk_plus_lang_spec_2.htm
https://software.intel.com/sites/default/files/m/6/a/3/0/7/37679-Intel_Cilk_plus_lang_spec_2.htm
http://queue.acm.org/detail.cfm?id=2513149
http://www.cs.nyu.edu/%7Elerner/spring10/projects/NUMA.pdf

http://www.cse.wustl.edu/~jain/cse567-17/ftp/loccilk/index.html 11

11. [Simhadri14] Harsha Vardhan Simhadri, Guy E. Blelloch, Jeremy T. Fineman, Phillip B.
Gibbons, and Aapo Kyrola. Experimental analysis of space-bounded schedulers. In
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA '14, , Prague, Czech Republic, 2014, pages 30-41 http://harsha-
simhadri.org/pubs/spaa14-SBFGK.pdf

List of Acronyms

DEQUE Double-ended queue
L3 Level 3 (cache)
NUMA Non-uniform memory access

Last modified: December 15, 2017
This and other papers on performance analysis of computer systems are available online at
http://www.cse.wustl.edu/~jain/cse567-17/index.html
Back to Raj Jain's Home Page

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/loccilk/index.html
http://harsha-simhadri.org/pubs/spaa14-SBFGK.pdf
http://harsha-simhadri.org/pubs/spaa14-SBFGK.pdf

	Performance Analysis of the Cilk Locality Runtime
	Table of Contents
	1. Introduction
	2. Background
	2.1 The Cilk Plus Runtime
	2.2 Multiple Deque Structure in the Cilk Locality Runtime
	2.3 Restricted Work Stealing in the Cilk Locality Runtime

	3. Experimental Evaluation
	3.1 Metrics
	3.2 Benchmarks and Workloads
	3.3 Experimental Evaluation

	4. Results and Analysis
	4.1 Execution Time Results
	4.2 Execution Time Variation Analysis
	4.3 Execution Time Visual Tests

	5. Additional Metrics Results and Analysis
	5.1 Work Inflation Results
	5.2 Scheduling Overhead Results
	5.3 Idle Time Results

	6. Summary
	References:
	List of Acronyms

