Introduction to Heavy-Tailed Distributions, Self-Similar Processes, and Long-Range Dependence

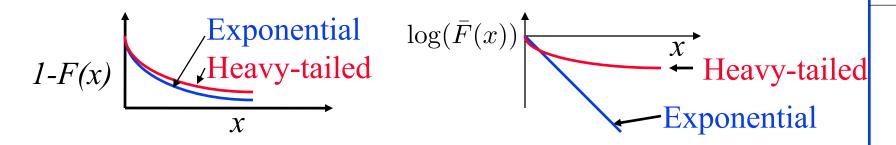
Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

- 1. Heavy-Tailed Distributions (HTDs)
- 2. How to Check for Heavy Tail?
- 3. Self-Similar Processes
- 4. Long Range Dependence (LRD)
- 5. Generating LRD Sequences
- 6. Self-Similarity vs. LRD
- 7. Hurst Exponent Estimation
- Note: These slides are based on R. Jain, "The Art of Computer Systems Performance Analysis," 2nd Edition (in preparation).

Heavy-Tailed Distributions (HTDs)



CCDF decays slower than the exponential distribution

$$P(X > x) = 1 - F(x) = \bar{F}(x) = e^{-\lambda x}$$

- □ CCDF = Complementary cumulative distribution function $\bar{F}(x) = 1 F(x)$
- As x tends to infinity, $e^{-\lambda x}$ goes to zero, the CCDF of a heavy-tailed distribution also goes to zero but very slowly and the ratio of the two is very large:
- $\text{Or, } \lim_{x \to \infty} \frac{F(x)}{e^{-\lambda x}} = \infty \quad \forall \lambda > 0 \quad \text{or} \quad \lim_{x \to \infty} \overline{F}(x) e^{\lambda x} = \infty \quad \forall \lambda > 0$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/k 38lrd.htm

©2017 Raj Jain

Examples of HTD Variables

- Many real-world phenomenon have been found to follow heavy tailed distributions.
 - Distribution of wealth.
 One percent of the population owns 40% of wealth.
 - > File sizes in computer systems
 - > Connection durations
 - > CPU times of jobs
 - Web pages sizes
- Significant impact on buffer sizing in switches and routers.

Example 38.1

■ Weibull distribution

$$F(x) = 1 - e^{-(x/a)^b}$$
 $a > 0, b > 0$

$$\lim_{x \to \infty} \frac{1 - F(X)}{e^{-\lambda x}} = \frac{e^{-(x/a)^b}}{e^{-\lambda x}} = e^{(-(x/a)^b + \lambda x)} = \infty \text{ for a > 0, } 0 < b < 1$$

- □ Therefore, for 0 < b < 1, Weibull distribution has a heavy tail.
- Other examples of heavy tailed distributions are Cauchy, lognormal, and t-distributions.

Power Law Distributions

■ A subset of heavy tailed distributions

$$\bar{F}(x) \Rightarrow \frac{c}{x^{\alpha}}$$

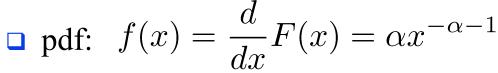
- \Box CCDF approaches a power function for large x
 - > For such distributions: all moments $E[x^l]$ for all values of $l \ge \alpha$ are infinite.
 - > If $\alpha \le 2$, x has infinite variance
 - > If α < 1, the variable has infinite mean
 - $\rightarrow \alpha$ is called the **tail index**.
- All power law distributions are heavy tailed but all heavy tailed distributions are not power law.

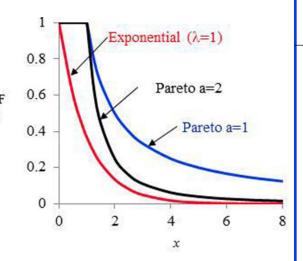
Example 38.2

Pareto distribution:

$$F(x) = 1 - x^{-\alpha} \qquad 1 \le x \le \infty, \alpha > 0$$

$$\bar{F}(x) = 1 - F(X) = \frac{1}{x^{\alpha}}$$





□ It's *l*th moment is:

For
$$l \neq \alpha$$
: $E[x^l] = \int_1^\infty x^l f(x) dx = \int_1^\infty \alpha x^{l-\alpha-1} dx = \frac{\alpha}{l-\alpha} x^{l-\alpha} \Big|_1^\infty = \begin{cases} \infty & l > \alpha \\ \frac{\alpha}{\alpha-l} & l < \alpha \end{cases}$

For
$$l=lpha: \quad E[x^l]=\int_1^\infty lpha x^{-1}dx=\left.lpha\ln x\right|_1^\infty=\infty$$

- \square All moments for $l \ge \alpha$ are infinite.
- □ For $2 \ge \alpha > 1$ variance and higher moments are infinite. For $1 \ge \alpha$ variance does not exist.
- □ For $1 \ge \alpha > 0$, even mean is infinite.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/k 38lrd.htm

©2017 Raj Jain

Effect of Heavy Tail

- 1. A random variable with HTD can have very large values with finite probabilities resulting in many outliers.
- 2. Sampling from such distributions results in mostly small values with a few very large valued samples.
- 3. Sample statistics (e.g., sample mean) may have a large variance ⇒ sample sizes required for a meaningful confidence are large.
- 4. Sample mean generally under-estimates the population mean.
- 5. Simulations with heavy-tailed input require very long time to reach steady state and even then the variance can be large.

$$|\bar{x}_n - \mu| \approx cn^{\frac{1}{\alpha} - 1}$$

c is some constant.

Effect of Heavy Tail (Cont)

□ The number of observations required to reach k-digit accuracy:

$$\frac{|\bar{x}_n - \mu|}{\mu} \le 10^{-k} \qquad \frac{cn^{\frac{1}{\alpha} - 1}}{\mu} \le 10^{-k} \qquad n \ge 10^{\frac{\log(c/\mu) + k}{1 - \frac{1}{\alpha}}}$$

- □ Assuming c=1, μ =1, 10^{101} observations are required for a single decimal digit accuracy (k=l) if α =1.01.
- □ Central limit theorem applies <u>only</u> to observations from distributions with finite variances.
 - > For heavy-tailed distributions with infinite variance, the central limit theorem does <u>not</u> apply.
 - > The sample mean does not have a normal distribution even after a large number of samples.
 - > Confidence interval formulas mentioned earlier can not be used.

Effect of Heavy Tail (Cont)

- □ M/PT/1 queue: Poisson arrivals and power-tailed service time
 - > pdf of queue length $f(n) \to c(\rho)/n^{\alpha}$ where $c(\rho)$ is a function of the traffic intensity ρ .
 - > If α <1, the mean service time is infinite and so are the traffic intensity and the mean queue length.
 - > If $\alpha \le 2$, the service time has infinite variance, and so does the queue length.

□ PT/M/1 queue:

- > Tail index α <1, the mean inter-arrival time is infinite.
- > For $1 < \alpha < 2$, the variance of the inter-arrival time is infinite.
- Heavy tailedness also implies **predictability**:
 - > If a heavy tailed task has run a long time, it is expected to run for an additional long time.

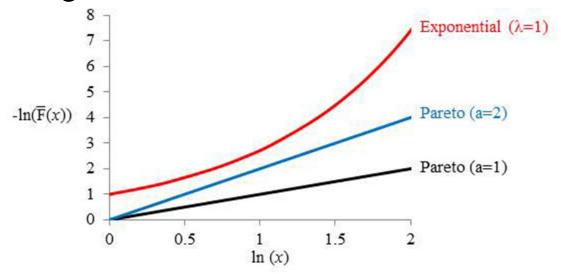
38-10

$$\lim_{x \to \infty} E[X - x | X > x] = \infty$$

How to Check for Heavy Tail?

- Make a Q-Q like plot on a log-log graph assuming a Pareto distribution
- $F(x) = 1-x^{-\alpha}$ $x=(1-F)^{-1/\alpha}$
- □ On a log-log graph: $ln (1-F) = \alpha ln x$
- \Box Find α from the slope of the best-fit line.

Good fit \Rightarrow High $R^2 \Rightarrow$ Power Law



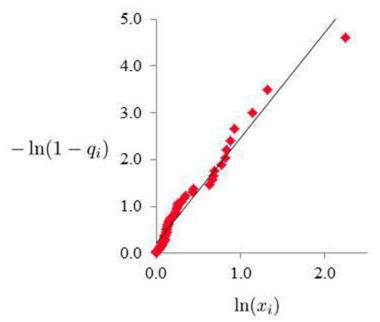
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/k_38lrd.htm

©2017 Raj Jain

Example 38.3

Check if this set of 50 observations has a heavy tail: 2.426, 1.953, 1.418, 1.080, 3.735, 2.307, 1.876, 1.110, 3.131, 1.134, 1.171, 1.141, 2.181, 1.007, 1.076, 1.131, 1.156, 2.264, 2.535, 1.001, 1.099, 1.149, 1.225, 1.099, 1.279, 1.052, 1.051, 9.421, 1.346, 1.532, 1.000, 1.106, 1.126, 1.293, 1.130, 1.043, 1.254, 1.118, 1.027, 1.383, 1.288, 1.988, 1.561, 1.106, 1.256, 1.187, 1.084, 1.968, 1.045, 1.155



http://www.cse.wustl.edu/~jain/cse567-17/k 38lrd.htm

Example 38.3 (Cont)

-	14	Pank Quantile		$\frac{\ln(x_i)}{-\ln(1-q_i)} - \ln(1-q_i)$				
	\mathcal{X}_{i}	Rank	Quantile	$ln(x_i)$	$-\ln(1-q_i)$			
		R_{i}	$q_i = \frac{R_i - 0.5}{r}$			$\times \ln(x_i)$		
			n			_		
	2.426	46	0.910	0.886	2.408	2.134		
	1.953	40	0.790	0.669	1.561	1.044		
	1.418	36	0.710	0.349	1.238	0.432		
	1.080	10	0.190	0.077	0.211	0.016		
	3.735	49	0.970	1.318	3.507	4.620		
	2.307	45	0.890	0.836	2.207	1.845		
	1.876	39	0.770	0.629	1.470	0.925		
	1.110	16	0.310	0.105	0.371	0.039		
	1.084	11	0.210	0.081	0.236	0.019		
	1.968	41	0.810	0.677	1.661	1.124		
	1.045	6	0.110	0.044	0.117	0.005		
	1.155	24	0.470	0.144	0.635	0.092		
-		Sum		17.308	49.654	37.006		
			Sum of Squares	14.781	95.774	164.977		
			Average	0.346	0.993	0.740		
Washington Unive	rsity in St. Louis		http://www.cse.wustl.edu/~jain/cse567-17/k_38lrd.htm					

38-13

©2017 Raj Jain

Example 38.3 (Cont)

$$b_1 = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2}$$

$$b_1 = \frac{37.006 - 50(0.346)(0.993)}{14.781 - 50(0.346)^2} = \frac{37.006 - 17.188}{14.781 - 5.991} = \frac{19.818}{8.790} = 2.255$$

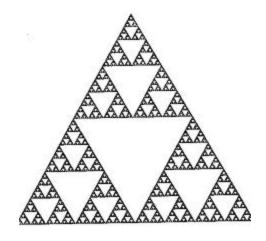
$$\alpha = 1/2.255 = 0.44$$

- □ SSY=95.774, SS0=49.311, SST=46.463, SSE=1.783, SSR=44.680, R^2 =0.962 \Rightarrow Good Fit \Rightarrow Power law
- □ The tail index α is low \Rightarrow Heavy tail

Exercise 38.6

Check if the following set of 50 observations has a power tail: 2.24, 1.67, 1.86, 1.12, 1.31, 1.63, 1.83, 7.87, 34.75, 4.24, 1.60, 2.51, 1.67, 8.04, 1.81, 5.47, 2.85, 2.05, 4.51, 1.85, 6.15, 1.86, 3.47, 2.84, 11.71, 3.02, 12.88, 1.36, 2.10, 18.85, 1.17, 31.43, 5.70, 1.76, 1.04, 1.29, 1.24, 2.50, 1725.34, 28.14, 1.43, 4.06, 1.56, 3.77, 1.00, 3.03, 118.59, 5.40, 1.01, 1.38

Self-Similarity



- When zoomed, the sub objects have the same shape as the original object
- Also called Fractals
- Latin "fractus" = "fractional" or "broken" ⇒Traditional Euclidean geometry can not be used to analyze these objects because their perimeter is infinite.

Self-Similar Processes

□ Scaling in time = scaling in magnitude

$$x_{at} \sim a^H x_t \qquad \forall a > 0$$

Statistical similarity \Rightarrow Similar distributions with similar mean and variance $E[x_{at}] = a^H E[x_t]$

$$Var[x_{at}] = a^{2H} Var[x_t]$$

- \rightarrow Similar variance \Rightarrow Self-similar in the second order
- ➤ Similar higher order moments ⇒ Self-similarity of higher orders
- \rightarrow All moments similar \Rightarrow strictly self-similar.

Example 38.4

- Consider the white noise process e_t with zero mean and unit variance: $e_t = z \sim N(0, 1)$ Here z is the unit normal variate.
- lacksquare Consider the process x_t : $x_t = t^H e_t = t^H z$
- For this process:

$$x_{at} = (at)^H z = a^H t^H z = a^H x_t$$

- \triangleright Therefore, x_t is a self-similar process.
- > H = Hurst exponent
- Harold Edwin Hurst, a hydrologist, who was studying optimum dam sizing for reservoirs along Nile River in Egypt

Short Range Dependence (SRD)

- □ Sum of Autocorrelation function is finite.
- \square Example 38.5: AR(1) with zero mean:

$$x_t = a_1 x_{t-1} + e_t$$

■ For this process, the autocorrelation function decreases exponentially:

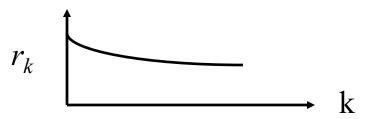
$$Cor[x_t, x_{t-k}] = r_k = a_1^{|k|}$$

 $lue{}$ Sum of autocorrelations is finite (provided $|a_1| < 1$):

$$\sum_{k=0}^{\infty} r_k = \frac{1}{1 - a_1}$$

Washington University in St. Louis

Long Range Dependence (LRD)



- □ Sum of Autocorrelation function is infinite $\sum r_k = \infty$ Alternative Definition:
- □ Limiting tail behavior of the autocorrelation:

$$r(k) \to k^{2H-2}L(k) \qquad k \to \infty$$

Here, L(x) is a *slowly varying function* of x.

L(ax)/L(x) tends to 1 as x approaches infinity.

Constants and logarithms are examples of slowly varying functions.

Examples of Processes with LRD

- Aggregation of a large number on-off processes with heavy-tailed on-times or heavy-tailed off times results in long-range dependence.
- □ File sizes have a long-tailed distribution
 ⇒ Internet traffic has a long range dependence.
- □ Connection durations have also been found to have a heavy-tailed distribution ⇒ traffic has a long range dependence
- UNIX processes have been found to have a heavy-tailed distribution ⇒ resource demands have LRD
- □ Congestion and feedback control mechanisms such as those used in Transmission Control Protocol (TCP) increase the range of dependence in the traffic.

Effect of Long Range Dependence

■ Long-range dependence invalidates all results for queueing theory obtained using Poisson processes, e.g., Buffer sizes required to avoid overflow may be off by thousands times.

Self-Similarity vs. LRD

- \Box Self-similarity \neq Long-range dependence
- Self-similar process can be short-range dependent or longrange dependent
- □ Self-similar processes with $\frac{1}{2}$ < H < 1 have long range dependence.
- □ Self-similar processes with $0 < H \le \frac{1}{2}$ have short range dependence.
- \square ARIMA(p, d, q) with integer valued d are SRD.
- □ FARIMA(p, d+ δ , q) with 0< δ <½ have long-range dependence.

FARIMA Models and LRD

- Fractional Auto-regressive Integrated Moving Average (FARIMA) processes exhibit LRD for certain values of d.
- Consider FARIMA(0, 0.25, 0): $(1 B)^{0.25}x_t = e_t$

$$x_{t} = (1-B)^{-0.25}e_{t}$$

$$= e_{t} - (-0.25)e_{t-1} + \frac{-0.25(-0.25-1)}{(1)(2)}e_{t-2} + \frac{-0.25(-0.25-1)(-0.25-2)}{(1)(2)(3)}e_{t-3} + \cdots$$

$$= e_{t} + 0.25e_{t-1} + \frac{0.25(0.25+1)}{(1)(2)}e_{t-2} + \frac{0.25(0.25+1)(0.25+2)}{(1)(2)(3)}e_{t-3} + \cdots$$

$$= e_{t} + 0.25e_{t-1} + 0.16e_{t-2} + 0.12e_{t-3} + 0.10e_{t-4} + \cdots + 0.04e_{t-10}$$

The coefficient of
$$e_{t-k}$$
 is
$$\frac{0.25(0.25+1)\cdots(0.25+k-1)}{(1)(2)\cdots(k)} = \frac{\Gamma(0.25+k)}{\Gamma(0.25)\Gamma(k+1)}$$

Here, Γ () is the Gamma function: $\Gamma(p+1) = p\Gamma(p)$

It is a generalization of factorial. For integer p, $\Gamma(p+1) = p!$

For example,
$$\Gamma(3) = 2$$
, $\Gamma(2) = 1$, $\Gamma(1) = 1$, $\Gamma(0) = \infty$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/k 38lrd.htm

©2017 Rai Jain

FARIMA Models and LRD

□ Consider FARIMA(0, δ , 0) with -1/2 < δ <1/2 and $\delta \neq 0$.

$$x_t = (1 - B)^{-\delta} e_t = \sum_{k=0}^{\infty} b_k e_{t-k}$$

Where:

$$b_k = \frac{\Gamma(k+\delta)}{\Gamma(\delta)\Gamma(k+1)}$$

Since e_t is Gaussian, x_t is also Gaussian.

 e_t is Gaussian Noise, x_t is fractional Gaussian Noise (fGn)

FARIMA and LRD (Cont)

□ The autocovariance of the FARIMA(0, δ ,0) sequence is:

$$E[x_t x_{t-k}] = \begin{cases} \sigma^2 \frac{\Gamma(1-2\delta)}{\Gamma^2(1-\delta)} & k = 0\\ \sigma^2 \frac{\Gamma(k+\delta)\Gamma(1-2\delta)}{\Gamma(k-\delta+1)\Gamma(\delta)\Gamma(1-\delta)} & k \neq 0 \end{cases}$$

- □ Autocorrelation at lag k: $r_k = \frac{\Gamma(k+\delta)\Gamma(1-\delta)}{\Gamma(k-\delta+1)\Gamma(\delta)}$
- Stirling's approximation: $\Gamma(p+1) \approx \sqrt{2\pi p} \left(\frac{p}{e}\right)^p$
- \Box For large k, r_k tends to $c|k|^{2\delta l}$ where $c = \frac{\Gamma(1-\delta)}{\Gamma(\delta)}$
- Recall that for LRD: $r(k) \to k^{2H-2}L(k)$ $k \to \infty$ \Rightarrow 2H-2=2 δ -1, that is, H= δ +1/2. \Rightarrow A FARIMA(0, δ ,0) sequence has LRD if 0< δ <1/2.

Generating LRD Sequences

- Generate the FARIMA(p, $d+\delta$, q) LRD sequence
- FARIMA(p, d+ δ , q) = ARIMA(p, d, q) with e_t replaced by fractional Gaussian noise generated by FARIMA(0, δ , 0)
- \square ARIMA(p,d,q) is given by

$$\phi(B)(1-B)^d x_t = a_0 + \psi(B)e_t$$

- ☐ It can be generated by one of the following two methods:
- 1. Using previous values of x_t :

$$x_t = a_0 + (1 - \phi(B)(1 - B)^d)x_t + \psi(B)e_t$$

Generating LRD Sequences (Cont)

2. Converting the model to a moving average model using a Taylor series expansion:

$$x_t = \frac{\psi(B)}{\phi(B)(1-B)^d} e_t = \left(\sum_{i=0}^m c_i B^i\right) e_t = \sum_{i=0}^m c_i e_{t-i}$$

Here c_i are coefficients of the Taylor series expansion and m is selected large enough so that c_i for i > m are negligible.

- Generate a white noise sequence $e_i \sim N(0, 1)$
- Generate a FARIMA(0, δ , 0) sequence y_i using a moving average of a large number m of e_i :

$$y_i = \sum_{k=0}^{m} \frac{\Gamma(k+\delta)}{\Gamma(k+1)\Gamma(\delta)} e_{i-k}$$

Washington University in St. Louis

Generating LRD Sequences (Cont)

Generate a FARIMA(p, $d+\delta$, q) sequence x_i by generating a usual ARIMA(p, d, q) as in Step 1 above with the white noise e_i replaced by y_i

$$x_t = a_0 + \frac{\psi(B)}{\phi(B)(1-B)^d}y(i)$$

 \square m=100 or m=1000 has been found to provide good results.

Example 38.6

 \Box Generate a FARIMA(0,0.25,0) Sequence

$$x_{t} = (1-B)^{-0.25}e_{t}$$

$$= e_{t} + 0.25e_{t-1} + \frac{0.25(0.25+1)}{2}e_{t-2} + \frac{0.25(0.25+1)(0.25+2)}{6}e_{t-3} + \cdots$$

$$= e_{t} + 0.25e_{t-1} + 0.16e_{t-2} + 0.12e_{t-3} + 0.10e_{t-4} + \cdots + 0.05e_{t-10}$$

- □ Generate $\underline{60}$ N(0,1) random numbers for $e_{.9}$ thru e_{50}
- □ The numbers are: 0.376, 0.789, -0.629, 0.102, 0.240, -0.909, 0.706, 0.019, -0.646, -2.030, -0.140, -1.816, 1.373, -0.723, -1.486, -0.984, -0.392, -0.323, 0.214, 0.652, -0.148, 0.499, -0.226, -1.878, 0.975, 0.273, -0.080, 0.040, 1.607, -0.154, -0.601, -0.468, 0.199, 1.129, 0.299, 1.332, -0.760, 0.980, -0.134, 1.378, -1.059, 0.364, -0.715, 0.769, -1.671, -0.346, 0.195, 0.157, -0.038, -1.253, -0.773, -0.910, 0.304, 1.146, 1.630, 0.578, 1.349, 0.615, -0.396, -1.599

Example 38.6 (Cont)

- Use the above equation to get x_1 through x_{50}
- The numbers are: -0.71, -2.22, 0.58, -0.91, -1.88, -1.68, -1.11, -0.99, -0.41, 0.22, -0.28, 0.31, -0.20, -2.01, 0.42, 0.21, -0.05, 0.04, 1.63, 0.25, -0.41, -0.47, 0.08, 1.12, 0.66, 1.62, -0.23, 1.16, 0.29, 1.59, -0.54, 0.50, -0.44, 0.81, -1.44, -0.61, -0.08, 0.05, -0.13, -1.34, -1.23, -1.38, -0.28, 0.82, 1.60, 0.96, 1.72, 1.19, 0.14, -1.31
- Note:
 - 1. m = 10 is used for illustration only. Need to use m = 1000
 - 2. A sample of 50 observations is too small to study long-range dependence.

Exercise 38.9

Generate a sample of 50 observations for a long-range dependent process with a Hurst exponent of 0.65. Use the following sequence of unit normal variates: 0.24, -0.91, 0.71, 0.02, -0.65, -2.03, -0.14, -1.82, 1.37, -0.72, -1.49, -0.98, -0.39, -0.32, 0.21, 0.65, -0.15, 0.50, -0.23, -1.88, 0.98, 0.27, -0.08, 0.04, 1.61, -0.15, -0.60, -0.47, 0.20, 1.13, 0.30, 1.33, -0.76, 0.98, -0.13, 1.38, -1.06, 0.36, -0.71, 0.77, -1.67, -0.35, 0.20, 0.16, -0.04, -1.25, -0.77, -0.91, 0.30, 1.15, 1.63, 0.58, 1.35, 0.61, -0.40, -1.60, 0.02, 0.55, -1.45, -1.11

Hurst Exponent Estimation

Variance-time plot (Similar to the method of batch means)

- 1. Start with m=1
- Divide the sample of size n in to non-overlapping subsequences of length m. There will be $j = \lfloor n/m \rfloor$ such subsequences.
- 3. Take the sample mean of each subset

$$\bar{x}_{km} = \frac{1}{m} \sum_{i=(k-1)m+1}^{i=km} x_i \qquad k = 1, 2, 3, \dots, j$$

4. Compute the overall mean:

$$\bar{\bar{x}}_m = \frac{1}{j} \sum_{k=1}^{k=j} \bar{x}_{km}$$

Hurst Parameter Estimation (Cont)

5. Compute the variance of the sample means

$$s_m^2 = \frac{1}{j-1} \sum_{k=1}^{k=j} (\bar{x}_{k,m} - \bar{\bar{x}}_m)^2$$

- 6. Repeat steps 2 through 5 for m=1, 2, 3, ...
- 7. Plot variance s_m^2 as a function of the subsequence size m on a log-log graph
- 8. Fit a simple linear regression to log(var) vs. log(m).
- 9. The slope of the regression line is 2H-2.
- 10. That is, the Hurst exponent is $1+a_1/2$, where a_1 is the slope of the regression line.

Note: 1. H estimate using this variance time plot method is biased

2. If a process is non-stationary, it may not be self-similar or have LRD, but may result in Hurst exponent between 0.5 and 1

Example 38.7

- □ Determine the Hurst exponent for the data of Example 38.6
- Batch size m=1: 50 batches, batch mean $\bar{x}_i = x_i$ Overall mean $\bar{x}_i = \frac{1}{50} \sum_{i=1}^{50} x_i = -0.09$

Variance of batch means $Var[\overline{x}_1] = \frac{1}{49} \sum_{i=1}^{50} (x_i - \overline{x}_1)^2 = 1.03$

□ Batch size m=2: 25 batches, batch mean $\bar{x}_{2i} = \frac{1}{2}(x_{2i-1} + x_{2i})$

Overall mean
$$\bar{x}_2 = \frac{1}{25} \sum_{i=1}^{25} \bar{x}_{2i} = -0.09$$

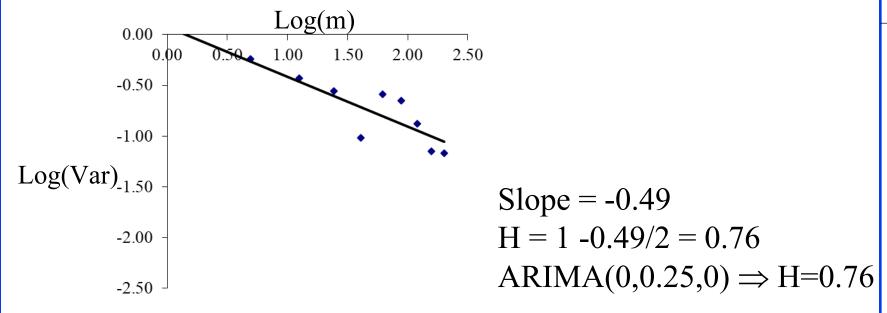
Variance of batch means $var[\overline{x}_2] = \frac{1}{24} \sum_{i=1}^{25} (\overline{x}_{2i} - \overline{\overline{x}}_2)^2 = 0.79$

Example 38.7 (cont)

m	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
Mean	-0.09	-0.09	-0.07	-0.07	-0.09	-0.07	-0.06	-0.07	-0.16	-0.09
Var	1.03	0.79	0.65	0.57	0.36	0.55	0.52	0.42	0.32	0.31
log m	0.00	0.69	1.10	1.39	1.61	1.79	1.95	2.08	2.20	2.30
log										
var	0.03	-0.24	-0.43	-0.55	-1.02	-0.59	-0.65	-0.88	-1.15	-1.17

■ Last few observations are not used for some batch sizes For example, m=9, only first 45 observations are used The overall mean is therefore different

Example 38.7 (cont)



- ☐ Hurst exponent using variance time plot is biased
- □ If x_t is non-stationary, it may not be self-similar or may not have LRD, but it may still result in 0.5<H<1

Exercise 38.10

■ Estimate the Hurst exponent for the observations generated in Exercise 38.9

- 1. Heavy tailed distributions: CCDF tail higher than exponential distribution
- 2. Self-Similar Process: $x_{at} \sim a^H x_t$
- 3. Long Range Dependence: $\sum r_k = \infty$
- 4. ARIMA(p,d+ δ ,q) with 0< δ <0.5 can be used to generate LRD sequences
- 5. Hurst parameter can be estimated with variance-time plots. For LRD 0.5<H<1.

References

- Fractals, http://mathworld.wolfram.com/Fractal.html
- □ O. Sheluhin, S. M. Smolskiy, and A. V. Osin, "Self-Similar Processes in Telecommunications," Wiley, Chichester, England, 2007, 314 pp.
- □ P. Doukhan, G. Oppenheim, and M. S. Taqqu, (Eds), "Theory and Applications of Long Range Dependence," Birkhauser, Boston, MA.
- K. Park, W. Willinger, (Eds), "Self-Similar Network Traffic and Performance Evaluation," Wiley, New York, NY, 2000.
- □ R. J. Adler, R. E. Feldman, and M. S. Taqqu, (Eds), "A Practical Guide to Heavy Tails," Birkhauser, Boston, 1998

Scan This to Download These Slides

Raj Jain http://rajjain.com

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/k 38lrd.htm

©2017 Raj Jain