Introduction to Simulation

Raj Jain
Washington University
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse567-17/

- □ Simulation: Key Questions
- □ Introduction to Simulation
- Common Mistakes in Simulation
- Other Causes of Simulation Analysis Failure
- Checklist for Simulations
- □ Terminology
- Types of Models

Introduction to Simulation

The best advice to those about to embark on a very large simulation is often the same as Punch's famous advice to those about to marry: Don't!

-Bratley, Fox, and Schrage (1986)

Common Mistakes in Simulation

- 1. Inappropriate Level of Detail:

 More detail ⇒ More time ⇒ More Bugs ⇒ More CPU
 - ⇒ More parameters ≠ More accurate
- 2. Improper Language
 - General purpose ⇒ More portable, More efficient, More time
- 3. Unverified Models: Bugs
- 4. Invalid Models: Model vs. reality
- 5. Improperly Handled Initial Conditions
- 6. Too Short Simulations: Need confidence intervals
- 7. Poor Random Number Generators: Safer to use a well-known generator
- 8. Improper Selection of Seeds: Zero seeds, Same seeds for all streams

Other Causes of Simulation Analysis Failure

- 1. Inadequate Time Estimate
- 2. No Achievable Goal
- 3. Incomplete Mix of Essential Skills
 - (a) Project Leadership
 - (b) Modeling and
 - (c) Programming
 - (d) Knowledge of the Modeled System
- 4. Inadequate Level of User Participation
- 5. Obsolete or Nonexistent Documentation
- 6. Inability to Manage the Development of a Large Complex Computer Program Need software engineering tools
- 7. Mysterious Results

Checklist for Simulations

- 1. Checks before developing a simulation:
 - (a) Is the goal of the simulation properly specified?
 - (b) Is the level of detail in the model appropriate for the goal?
 - (c) Does the simulation team include personnel with project leadership, modeling, programming, and computer systems backgrounds?
 - (d) Has sufficient time been planned for the project?
- 2. Checks during development:
 - (a) Has the random number generator used in the simulation been tested for uniformity and independence?
 - (b) Is the model reviewed regularly with the end user?
 - (c) Is the model documented?

Checklist for Simulations (Cont)

- 3. Checks after the simulation is running:
 - (a) Is the simulation length appropriate?
 - (b) Are the initial transients removed before computation?
 - (c) Has the model been verified thoroughly?
 - (d) Has the model been validated before using its results?
 - (e) If there are any surprising results, have they been validated?
 - (f) Are all seeds such that the random number streams will not overlap?

Terminology

□ State Variables: Define the state of the system

Can restart simulation from state variables

E.g., length of the job queue.

Event: Change in the system state.

E.g., arrival, beginning of a new execution, departure

Types of Models

- □ Continuous Time Model: State is defined at all times
- Discrete Time Models: State is defined only at some instants

©2017 Raj Jain

Washington University in St. Louis

Types of Models (Cont)

- □ Continuous State Model: State variables are continuous
- □ Discrete State Models: State variables are discrete

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Types of Models (Cont)

- □ Discrete state = Discrete event model
- □ Continuous state = Continuous event model
- □ Continuity of time ≠ Continuity of state
- □ Four possible combinations:
- 1. discrete state/discrete time
- 2. discrete state/continuous time
- 3. continuous state/discrete time
- 4. continuous state/continuous time models

Types of Models (Cont)

□ Deterministic and Probabilistic Models:

□ Static and Dynamic Models:

CPU scheduling model vs. $E = mc^2$.

Linear and Nonlinear Models

 \Box Output = fn(Input)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Open and Closed Models

 \square External input \Rightarrow open

Stable and Unstable Models

- □ Stable ⇒ Settles to steady state
- \square Unstable \Rightarrow Continuously changing.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Computer System Models

- Continuous time
- □ Discrete state
- Probabilistic
- Dynamic
- Nonlinear
- Open or closed
- □ Stable or unstable

Homework 24

For each of the following models, identify all classifications that apply to it:

1.
$$\bar{y}(t+1) = \bar{y}(t) + a$$

2.
$$y(t+1) = y(t) + 3$$

3.
$$y(t) = t^{1.5}$$

4.
$$y(t) = a + bt + ct^2$$

5.
$$n(t+1) = 3n(t) + 5$$

6.
$$y(t) = cos(wt + \psi)$$

Types of Simulations

- Emulation: Using hardware or firmware
 E.g., Terminal emulator, processor emulator
 Mostly hardware design issues
- 2. Monte Carlo Simulation
- 3. Trace-Driven Simulation
- 4. Discrete Event Simulation

Types of Simulation (Cont)

Monte Carlo method [Origin: after Count Montgomery de Carlo, Italian gambler and random-number generator (1792-1838).] A method of jazzing up the action in certain statistical and number-analytic environments by setting up a book and inviting bets on the outcome of a computation.

- The Devil's DP Dictionary McGraw Hill (1981)

Monte Carlo Simulation

- □ Static simulation (No time axis)
- □ To model probabilistic phenomenon
- Need pseudorandom numbers
- Used for evaluating non-probabilistic expressions using probabilistic methods.

Monte Carlo: Example

$$I = \int_0^2 e^{-x^2} dx$$
$$x \sim \text{Uniform}(0, 2)$$

Density function $f(x) = \frac{1}{2}$ iff $0 \le x \le 2$

$$y = 2e^{-x^2}$$

Monte Carlo: Example (Cont)

$$E(y) = \int_{0}^{2} 2e^{-x^{2}} f(x) dx$$

$$= \int_{0}^{2} 2e^{-x^{2}} \frac{1}{2} dx$$

$$= \int_{0}^{2} e^{-x^{2}} dx$$

$$= I$$

 $x_i \sim \text{Uniform}(0,2)$

$$y_{i} = 2e^{-x_{i}^{2}}$$

$$I = E(y) = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

Trace-Driven Simulation

- ☐ Trace = Time ordered record of events on a system
- □ Trace-driven simulation = Trace input
- □ Used in analyzing or tuning resource management algorithms
 Paging, cache analysis, CPU scheduling, deadlock prevention
 dynamic storage allocation
- Example: Trace = Page reference patterns
- □ Should be independent of the system under study
 E.g., trace of pages fetched depends upon the working set size and page replacement policy
 - > Not good for studying other page replacement policies
 - > Better to use pages referenced

Advantages of Trace-Driven Simulations

- 1. Credibility
- 2. Easy Validation: Compare simulation with measured
- 3. Accurate Workload: Models correlation and interference
- 4. Detailed Trade-Offs:

Detailed workload ⇒ Can study small changes in algorithms

5. Less Randomness:

Trace \Rightarrow deterministic input \Rightarrow Fewer repetitions

- 6. Fair Comparison: Better than random input
- 7. Similarity to the Actual Implementation:

Trace-driven model is similar to the system

⇒ Can understand complexity of implementation

Disadvantages of Trace-Driven Simulations

- 1. Complexity: More detailed
- 2. Representativeness: Workload changes with time, equipment
- 3. Finiteness: Few minutes fill up a disk
- 4. Single Point of Validation: One trace = one point
- 5. Detail
- 6. Trade-Off: Difficult to change workload

Discrete Event Simulations

- Concentration of a chemical substance
 - ⇒ Continuous event simulations
- \square Number of jobs \Rightarrow Discrete event
- □ Discrete state ≠ discrete time

Summary

- 1. Common Mistakes: Detail, Invalid, Short
- 2. Discrete Event, Continuous time, nonlinear models
- 3. Monte Carlo Simulation: Static models
- 4. Trace driven simulation: Credibility, difficult trade-offs
- 5. Even Set Algorithms: Linked list, indexed linear list, heaps

Scan This to Download These Slides

Raj Jain http://rajjain.com

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

 $\underline{https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw}$

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain