Other Experimental Designs

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

- Analysis of Covariance
- Plackett-Burman Designs
- Box-Behenken Designs
- Response Surface Analysis

Washington University in St. Louis

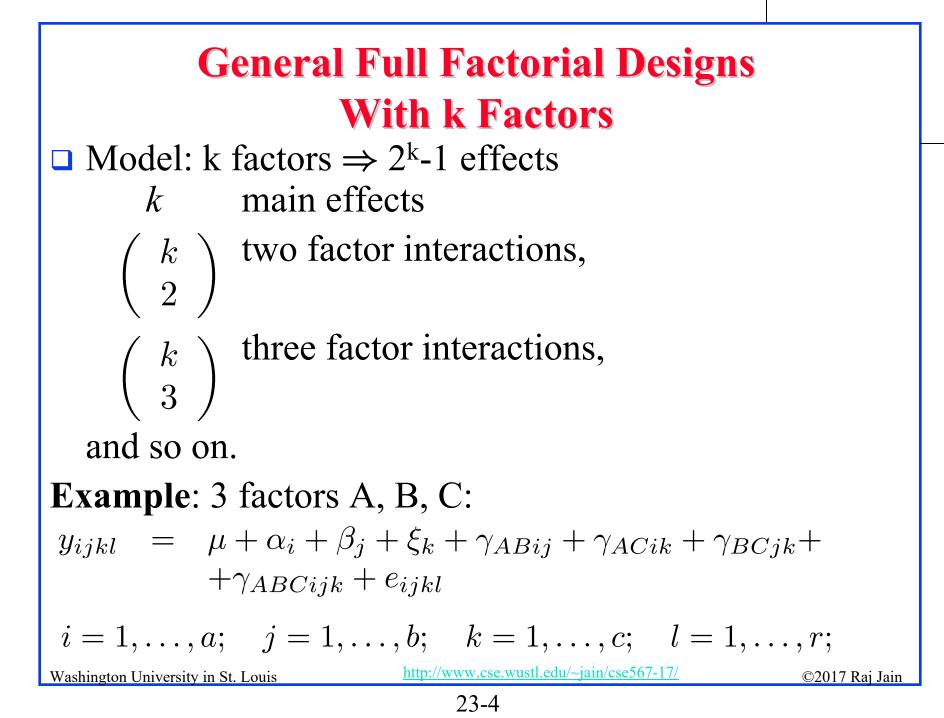
http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Covariate

- Covariate: A factor that cannot be controlled but can be measured
 - Generally a continuous variable such as temperature
 - > Can be added as a predictor in a regression
- Example: Two categorical factors A, B, and a covariate x $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ABij} + c_x x_{ijk} + e_{ijk}$
- Assumption: The effect of covariate is independent of other variables and is additive

 $\bar{y}_{\dots} = \mu + c_x x_{\dots}$


$$y_{ijk} - y_{\dots} = \alpha_i + \beta_j + \gamma_{ABij} + c_x(x_{ijk} - x_{\dots}) + e_{ijk}$$

$$\sum (y_{ijk} - y_{...})^2 = \sum \alpha_i^2 + \sum \beta_j^2 + \sum \gamma_{ij}^2 + c_x^2 \sum (x_{ijk} - x_{...})^2 + \sum e_{ijk}^2 \\ SST = SSA + SSB + SSAB + SSAB + SSX + SSE \\ abr - 1 = (a - 1) + (b - 1) + (a - 1)(b - 1) + 1 + ab(r - 1) - 1$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

²³⁻³

Model Parameters

Response in the lth replication with factors = y_{ijkl} A, B, and C at levels i, j, and k, respectively. Mean response μ =Effect of factor A at level i α_i β_j Effect of factor B at level j = ξ_k Effect of factor C at level k _ Interaction between A and B at levels i and j. = γ_{ABij} Interaction between A, B, C at levels i, j, and k. = γ_{ABCijk} and so on □ Analysis: Similar to that with two factors

$$\mu = \bar{y}_{\dots}$$

$$\alpha_i = \bar{y}_{i\dots} - \bar{y}_{\dots}$$

The sums of squares, degrees of freedom, and F-test also extend as expected. }
Washington University in St. Louis
<u>http://www.cse.wustl.edu/~jain/cse567-17/</u> ©2017 Raj Jain

Case Study 23.1: Paging Process

Factors and Levels for Page Swap Study									
Symbol	Factor	Levels							
		1	2	3					
А	Page Replacement Algorithm	LRUV	FIFO	RAND					
D	Deck Arrangement	GROUP	FREQY	ALPHA					
Р	Problem Program	Small	Medium	Large					
Μ	Memory Pages	24P	20P	16P					

□ Total 81 experiments.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 23.1 (Cont)

Total Number of Page Swaps

Algor-	Prog-		GROUP			FREQ	Y	ALPHA			
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P	
LRUV	Small	32	48	538	52	244	998	59	536	1348	
	Medium	53	81	1901	112	776	3621	121	1879	4639	
	Large	142	197	5689	262	2625	10012	980	5698	12880	
FIFO	Small	49	67	789	79	390	1373	85	814	1693	
	Medium	100	134	3152	164	1255	4912	206	3394	5838	
	Large	233	350	9100	458	3688	13531	1633	10022	17117	
RAND	Small	62	100	1103	111	480	1782	111	839	2190	
	Medium	96	245	2807	237	1502	6007	286	3092	7654	
	Large	265	2012	12429	517	4870	18602	1728	8834	23134	

□ $y_{max}/y_{min} = 23134/32 = 723 \implies log transformation$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 23.1 (Cont)

□ Transformed Data For the Paging Study

Algor-	Prog-	(GROUP			FREQY	ľ	ALPHA		
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P
LRUV	Small	1.51	1.68	2.73	1.72	2.39	3.00	1.77	2.73	3.13
	Medium	1.72	1.91	3.28	2.05	2.89	3.56	2.08	3.27	3.67
	Large	2.15	2.29	3.76	2.42	3.42	4.00	2.99	3.76	4.11
FIFO	Small	1.69	1.83	2.90	1.90	2.59	3.14	1.93	2.91	3.23
	Medium	2.00	2.13	3.50	2.21	3.10	3.69	2.31	3.53	3.77
	Large	2.37	2.54	3.96	2.66	3.57	4.13	3.21	4.00	4.23
RAND	Small	1.79	2.00	3.04	2.05	2.68	3.25	2.05	2.92	3.34
	Medium	1.98	2.39	3.58	2.37	3.18	3.78	2.46	3.49	3.88
	Large	2.42	2.30	4.09	2.71	3.69	4.27	3.24	3.95	4.36

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 23.1 (Cont)										
□ Effects:	• Effects: $\alpha_1 = y_{1} - y_{} = 2.74 - 2.90 = -0.16$									
	<u>Main Effects</u> Level									
		Factor	1	2	3					
		A	-0.16	0.02	0.14					
		D	-0.36	0.07	0.29					
		Р	-0.47	-0.02	0.49					
		Μ	-0.69	-0.01	0.70					

□ Also

- > Six two-factor interactions,
- > Four three-factor interactions, and
- One four-factor interaction.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 23.1: ANOVA Table

Compo-	Sum of	%Variation	DF	Mean
nent	Squares			Square
У	730.01		81	
$ar{y}_{\ldots}$	681.21		1	
y- $ar{y}$	48.80	100%	80	
Main Effects	45.80	93.85%	8	5.7
A	1.30		2	
D	6.10		2	
Р	12.30		2	
Μ	26.20		2	
First-order Interactions	2.40	4.91%	24	0.1
AD	0.07		4	
AP	0.02		4	
AM	0.03		4	
DP	0.15		4	
DM	1.96		4	
PM	0.14		4	
Second-order Interaction	s 0.48	0.98%	32	0.015
ADP	0.05		8	
ADM	0.13		8	
APM	0.04		8	
DPM	0.26		8	
Third-order Interaction	0.07	0.14%	16	0.004
(ADPM)				
Washington University in St. Louis	http://www.cse.	wustl.edu/~jain/cs	e567-17	7/

Case Study 23.1: Simplified model

□ Most interactions except DM are small.

 $y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \xi_{jl}$

- μ = grand mean
- α_i = Effect of A
- $\beta_j = \text{Effect of D}$
- $\tilde{\gamma_k}$ = Effect of P
- $\delta_l = \text{Effect of M}$
- ξ_{jl} = Interaction between D and M.

Washington University in St. Louis

Where,

http://www.cse.wustl.edu/~jain/cse567-17/

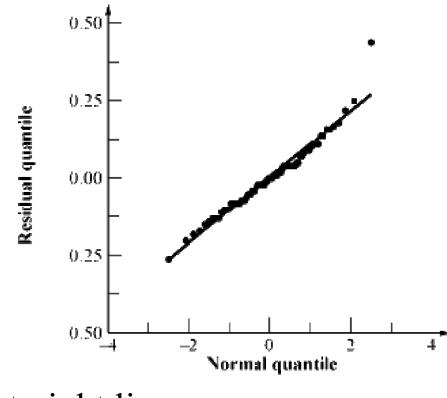
Case Study 23.1: Simplified Model (Cont)

Interactions Between Deck Arrangement and Memory Pages

			М	
		1	2	3
D	1	0.11	-0.30	0.19
	2	-0.05	0.09	-0.04
	3	-0.06	0.21	-0.15

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

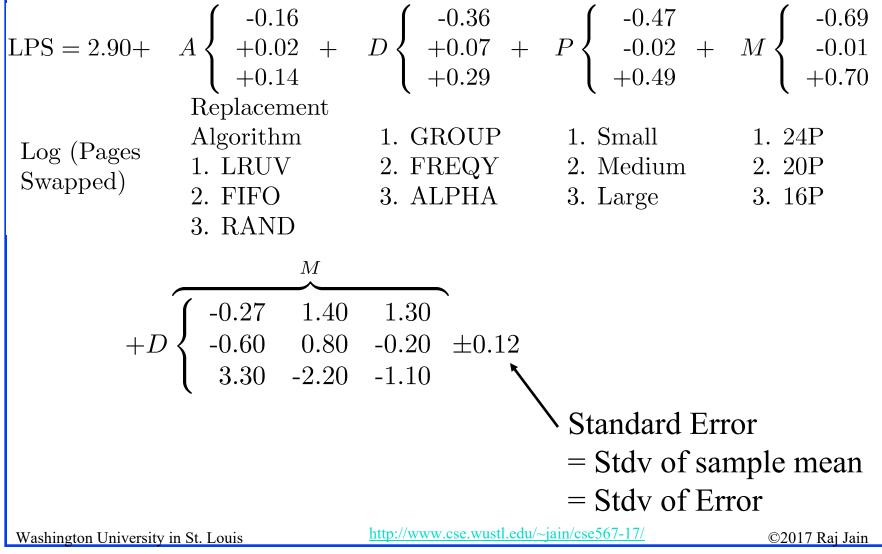

Case Study 23.1: Error Computation

Algor-	Prog-	(GROUP			FREQY	7	ALPHA		
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P
LRUV	Small	0.18	0.08	-0.07	0.11	-0.04	-0.02	-0.05	-0.04	0.01
	Medium	-0.05	-0.13	0.04	0.01	0.02	0.10	-0.18	0.07	0.11
	Large	-0.13	-0.26	0.01	-0.14	0.04	0.03	0.22	0.04	0.04
FIFO	Small	0.17	0.04	0.09	0.11	-0.02	-0.07	-0.08	-0.04	-0.08
	Medium	0.05	-0.10	0.07	-0.02	0.04	0.05	-0.13	0.14	0.02
	Large	-0.10	-0.20	0.02	-0.00	0.00	-0.03	0.25	0.09	-0.02
RAND	Small	0.16	0.09	-0.06	0.14	-0.05	-0.07	-0.08	-0.08	-0.08
	Medium	-0.10	0.04	0.04	-0.02	0.00	0.01	-0.11	-0.02	-0.02
	Large	-0.17	0.44	0.04	-0.15	0.00	-0.01	0.16	-0.08	-0.01

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 23.1: Visual Test



Almost a straight line.Outlier was verified.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 23.1: Final Model

Observation Method

- □ To find the best combination.
- Example: Scheduler Design
- □ Three Classes of Jobs:
 - > Word processing
 - > Interactive data processing
 - > Background data processing
- □ Five Factors 2⁵⁻¹ design

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 23.1: Measured Throughputs

No.	А	В	С	D	Ε	T_W	T_{I}	T_B
1	-1	-1	-1	-1	1	15.0	25.0	15.2
2	1	-1	-1	-1	-1	11.0	41.0	3.0
3	-1	1	-1	-1	-1	25.0	36.0	21.0
4	1	1	-1	-1	1	10.0	15.7	8.6
5	-1	-1	1	-1	-1	14.0	63.9	7.5
6	1	-1	1	-1	1	10.0	13.2	7.5
7	-1	$\begin{bmatrix} 1 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}$	-1	1	28.0	36.3	20.2
8	1	1	1	-1	-1	11.0	23.0	3.0
9	-1	-1	-1	1	-1	14.0	66.1	6.4
10	1	-1	-1	1	1	10.0	9.1	8.4
11	-1	$\begin{bmatrix} 1 \end{bmatrix}$	-1	1	1	27.0	34.6	15.7
12	1	1	-1	1	-1	11.0	23.0	3.0
13	-1	-1	1	1	1	14.0	26.0	12.0
14	1	-1	1	1	-1	11.0	38.0	2.0
15	-1	1	1	1	-1	25.0	35.0	17.2
16	1	1	1	1	1	11.0	22.0	2.0
	rsity in St. Lo		ht	tp://www.cs	e.wustl.edu/	~jain/cse567-17	/	©.

Example 23.1: Conclusions

To get high throughput for word processing jobs,:

- 1. There should not be any preemption (A=-1)
- 2. The time slice should be large (B=1)
- 3. The fairness should be on (E=1)
- 4. The settings for queue assignment and re-queueing do not matter.

Ranking Method

□ Sort the experiments.

Washington U

-	No.	A	В	С	D	Ε	T_W	T_I	T_B
-	7	-1	1	1	-1	1	28.0	36.3	20.2
	11	-1	1	-1	1	1	27.0	34.6	15.7
	15	-1	1	1	1	-1	25.0	35.0	17.2
	3	-1	1	-1	-1	-1	25.0	36.0	21.0
	1	-1	-1	-1	-1	1	15.0	25.0	15.2
	5	-1	-1	1	-1	-1	14.0	63.9	7.5
	9	-1	-1	-1	1	-1	14.0	66.1	6.4
	13	-1	-1	1	1	1	14.0	26.0	12.0
	2	1	-1	-1	-1	-1	11.0	41.0	3.0
	8	1	1	1	-1	-1	11.0	23.0	3.0
	12	1	1	-1	1	-1	11.0	23.0	3.0
	14	1	-1	1	1	-1	11.0	38.0	2.0
	16	1	1	1	1	1	11.0	22.0	2.0
	6	1	-1	1	-1	1	10.0	13.2	7.5
	4	1	1	-1	-1	1	10.0	15.7	8.6
	10	1	-1	-1	1	1	10.0	9.1	8.4
- iversity i	in St. Loui	s		http://ww	w.cse.	wustl.edu	/~jain/cse	567-17/	

Example 23.2: Conclusions

- 1. A=-1 (no preemption) is good for word processing jobs and also that A=1 is bad.
- 2. B=1 (large time slice) is good for such jobs. No strong negative comment can be made about B=-1.
- 3. Given a choice C should be chosen at 1, that is, there should be two queues.
- 4. The effect of E is not clear.
- 5. If top rows chosen, then E=1 is a good choice.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Range Method

Range = Maximum-Minimum

□ Factors with large range are important.

		Level		Range of
Factor	1	2	3	of Averages
Replacement Algorithm	2056	2986	3781	1725
Deck Arrangement	1584	2913	4326	2742
Problem Program	592	2047	6185	5593
Memory Size	305	2006	6512	6207

- □ Memory size is the most influential factor.
- Problem program, deck arrangement, and replacement algorithm are next in order.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

□ A general k factor design can have k main effects, two factor interactions, three factor interactions, and so on.

Information Methods:

- > Observation: Find the highest or lowest response
- Ranking: Sort all responses
- Range: Largest smallest average response

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Homework 23

□ Analyze the following results using observation and ranking methods. → A B C D E T

No.	А	В	С	D	Ε	T
1	-1	-1	-1	-1	1	13.2
2	1	-1	-1	-1	-1	4.0
3	-1	1	-1	-1	-1	22.0
4	1	1	-1	-1	1	9.6
5	-1	-1	1	-1	-1	6.5
6	1	-1	1	-1	1	8.5
7	-1	1	1	-1	1	21.2
8	1	1	1	-1	-1	2.0
9	-1	-1	-1	1	-1	7.4
10	1	-1	-1	1	1	7.4
11	-1	1	-1	1	1	14.7
12	1	1	-1	1	-1	4.0
13	-1	-1	1	1	1	13.0
14	1	-1	1	1	-1	3.0
15	-1	1	1	1	-1	18.2
16	1	1	1	1	1	3.0

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Scan This to Download These Slides Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain