Two Factor Full Factorial Design with Replications

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Model

- Computation of Effects
- Estimating Experimental Errors
- □ Allocation of Variation
- □ ANOVA Table and F-Test
- Confidence Intervals For Effects

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Model

- Replications allow separating out the interactions from experimental errors.
- □ Model: With *r* replications

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

- y_{ijk} = Response in the kth replication with factor A at level j and factor B at level i
- μ = mean response
- α_j = Effect of factor A at level j
- β_i = Effect of Factor B at level i
- γ_{ij} = Effect of interaction between factors A and B
- e_{ijk} = Experimental error

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Model (Cont)

□ The effects are computed so that their sum is zero:

$$\sum_{j=1}^{a} \alpha_j = 0; \sum_{i=1}^{b} \beta_i = 0;$$

□ The interactions are computed so that their row as well as column sums are zero:

$$\sum_{j=1}^{a} \gamma_{1j} = \sum_{j=1}^{a} \gamma_{2j} = \dots = \sum_{j=1}^{a} \gamma_{bj} = 0$$

$$\sum_{i=1}^{b} \gamma_{i1} = \sum_{i=1}^{b} \gamma_{i2} = \dots = \sum_{i=1}^{b} \gamma_{ia} = 0$$

 \Box The errors in each experiment add up to zero:

k=1

$$\sum e_{ijk} = 0 \quad \forall i, j$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Computation of Effects

 $y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$

□ Averaging the observations in each cell:

$$\bar{y}_{ij.} = \mu + \alpha_j + \beta_i + \gamma_{ij}$$

□ Similarly,

- \Rightarrow Use cell means to compute row and column effects.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 22.1: Code Size

	Processors				
Workloads	W	Х	Y	Ζ	
Ι	7006	12042	29061	9903	
	6593	11794	27045	9206	
	7302	13074	30057	10035	
J	3207	5123	8960	4153	
	2883	5632	8064	4257	
	3523	4608	9677	4065	
Κ	4707	9407	19740	7089	
	4935	8933	19345	6982	
	4465	9964	21122	6678	
L	5107	5613	22340	5356	
	5508	5947	23102	5734	
	4743	5161	21446	4965	
М	6807	12243	28560	9803	
	6392	11995	26846	9306	
	7208	12974	30559	10233	

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

²²⁻⁶

Example 22.1: Log Transformation

	Processors					
Workloads	W	Х	Y	Ζ		
Ι	3.8455	4.0807	4.4633	3.9958		
	3.8191	4.0717	4.4321	3.9641		
	3.8634	4.1164	4.4779	4.0015		
J	3.5061	3.7095	3.9523	3.6184		
	3.4598	3.7507	3.9066	3.6291		
	3.5469	3.6635	3.9857	3.6091		
Κ	3.6727	3.9735	4.2953	3.8506		
	3.6933	3.9510	4.2866	3.8440		
	3.6498	3.9984	4.3247	3.8246		
\mathbf{L}	3.7082	3.7492	4.3491	3.7288		
	3.7410	3.7743	4.3636	3.7585		
	3.6761	3.7127	4.3313	3.6959		
Μ	3.8330	4.0879	4.4558	3.9914		
	3.8056	4.0790	4.4289	3.9688		
	3.8578	4.1131	4.4851	4.0100		

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 22.1: Computation of Effects

		Proce	essors	Row	Row	Row	
Workloads	W	Х	Y	Z	Sum	Mean	Effect
Ι	3.8427	4.0896	4.4578	3.9871	16.3772	4.0943	0.1520
J	3.5043	3.7079	3.9482	3.6188	14.7792	3.6948	-0.2475
Κ	3.6720	3.9743	4.3022	3.8397	15.7882	3.9470	0.0047
\mathbf{L}	3.7084	3.7454	4.3480	3.7277	15.5295	3.8824	-0.0599
Μ	3.8321	4.0933	4.4566	3.9900	16.3720	4.0930	0.1507
Col Sum	18.5594	19.6105	21.5128	19.1635	78.8463		
Col Mean	3.7119	3.9221	4.3026	3.8327		3.9423	
Col effect	-0.2304	-0.0202	0.3603	-0.1096			

- An average workload on an average processor requires a code size of 10^{3.94} (8710 instructions).
- □ Processor W requires $10^{0.23}$ (=1.69) less code than avg processor.
- Processor X requires 10^{0.02} (=1.05) less than an average processor and so on.
- □ The ratio of code sizes of an average workload on processor W and X is $10^{0.21}$ (= 1.62).

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Example 22.1: Interactions

Workloads	W	Х	Y	Ζ
Ι	-0.0212	0.0155	0.0032	0.0024
J	0.0399	0.0333	-0.1069	0.0337
Κ	-0.0447	0.0475	-0.0051	0.0023
L	0.0564	-0.1168	0.1054	-0.0450
Μ	-0.0305	0.0205	0.0033	0.0066

- □ Check: The row as well column sums of interactions are zero.
- Interpretation: Workload I on processor W requires 0.02 less log code size than an average workload on processor W or equivalently 0.02 less log code size than I on an average processor.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Computation of Errors

Estimated Response:

$$\hat{y}_{ij} = \mu + \alpha_j + \beta_i + \gamma_{ij} = \bar{y}_{ij}.$$

□ Error in the *k*th replication:

$$e_{ijk} = y_{ijk} - \bar{y}_{ij.}$$

 Example 22.2: Cell mean for (1,1) = 3.8427 Errors in the observations in this cell are: 3.8455-3.8427 = 0.0028 3.8191-3.8427 = -0.0236, and 3.8634-3.8427 = 0.0208 Check: Sum of the three errors is zero.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Allocation of Variation

 $\sum_{ijk} y_{ijk}^2 = abr\mu^2 + br\sum_j \alpha_j^2 + ar\sum_i \beta_i^2 + r\sum_{ij} \gamma_{ij}^2 + \sum_{ijk} e_{ijk}^2$ SSY = SS0 + SSA + SSB + SSAB + SSE

□ Interactions explain less than 5% of variation
 ⇒ may be ignored.

http://www.cse.wustl.edu/~jain/cse567-17/

Analysis of Variance

Degrees of freedoms:

$$\frac{\text{MSA}}{\text{MSE}} \sim F[a-1, ab(r-1)]$$

$$\frac{\text{MSB}}{\text{MSE}} \sim F[b-1, ab(r-1)]$$

$$\frac{\text{MSAB}}{\text{MSE}} \sim F[(a-1)(b-1), ab(r-1)]$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

ANOVA for

Two Factors w Replications

Compo-	Sum of	%Variation	DF	Mean	F-	<i>F</i> -
nent	Squares			Square	Comp .	Table
\overline{y}	$SSY = \sum y_{ijk}^2$		abr			
$ar{y}_{\ldots}$	$SS0 = abr \mu^2$		1			
$y - \bar{y}_{\dots}$	SST = SSY - SS0	100	abr-1			
A	$\mathrm{SSA} = br\Sigma \alpha_j^2$	$100\left(\frac{\mathrm{SSA}}{\mathrm{SST}}\right)$	a - 1	$MSA = \frac{SSA}{a-1}$	$\frac{MSA}{MSE}$	$F_{[1-\alpha;a-1,ab(r-1)]}$
B	$SSB = ar\Sigma\beta_i^2$	$100\left(\frac{\text{SSB}}{\text{SST}}\right)$	b - 1	$MSB = \frac{SSB}{b-1}$	$\frac{MSB}{MSE}$	$F_{[1-\alpha;b-1,ab(r-1)]}$
AB	$\mathrm{SSAB} = r\Sigma\gamma_{ij}^2$	$100\left(\frac{\text{SSAB}}{\text{SST}}\right)$	$\begin{array}{c} (a-1) \\ (b-1) \end{array}$	$\frac{\text{MSAB}}{\frac{\text{SSAB}}{(a-1)(b-1)}}$	MSAB MSE	$F_{[1-\alpha,(a-1)(b-1),ab(r-1)]}$
e	SSE = SST - (SSA + SSB + SSAB)	$100\left(\frac{\text{SSE}}{\text{SST}}\right)$	ab(r-1)	$MSE = \frac{SSE}{ab(r-1)}$		()]
		$s_e = \sqrt{\mathrm{MS}}$	SE			

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 22.4: Code Size Study

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
y	936.95					
$ar{y}_{}$	932.51					
$y - \bar{y}_{\dots}$	4.44	100.00%	59			
Processors	2.93	65.96%	3	0.9765	1340.01	2.23
Workloads	1.33	29.90%	4	0.3320	455.65	2.09
Interactions	0.15	3.48%	12	0.0129	17.70	1.71
Errors	0.03	0.66%	40	0.0007		
	$s_e = \sqrt{1}$	$\overline{\text{MSE}} = \sqrt{0.0}$	$\overline{008} =$	0.03		

All three effects are statistically significant at a significance level of 0.10.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Confidence Intervals For Effects							
Parameter Estimation							
Parameter	Estimate	Variance					
μ	$ar{y}_{\ldots}$	s_e^2/abr					
$lpha_j$	$ar{y}_{i}$ - $ar{y}_{}$	$s_e^2(a-1)/abr$					
eta_i	$ar{y}_{.j.}$ - $ar{y}_{}$	$s_e^2(b-1)/abr$					
γ_{ij}	\bar{y}_{ij} $\bar{y}_{i\ldots}$ - $\bar{y}_{.j}$.+ \bar{y}_{\ldots}	$s_e^2(a-1)(b-1)/abr$					
$\Sigma h_j \alpha_j, \Sigma h_j = 0$	$\Sigma h_j ar{y}_{.j.}$	$\Sigma h_j^2 s_e^2/br$					
$\Sigma h_i \beta_i, \Sigma h_i = 0$	$\Sigma \ h_i \ ar{y}_{i}$	$\Sigma h_i^2 s_e^2 / ar$					
s_e^2	$\Sigma e_{ijk}^2/\{ab(r-1)\}$						
Degrees of freedom for errors $= ab(r-1)$							
Use t values at ab(r-1) degrees of freedom for confidence intervals							

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 22.5: Code Size Study

□ From ANOVA table: s_e=0.03. The standard deviation of processor effects:

$$s_{\alpha_j} = s_e \sqrt{\frac{a-1}{abr}} = 0.03 \sqrt{\frac{4-1}{4 \times 5 \times 3}} = 0.0060$$

■ The error degrees of freedom: $ab(r-1) = 40 \Rightarrow$ use Normal tables For 90% confidence, $z_{0.95} = 1.645$ 90% confidence interval for the effect of processor W is: $\alpha_1 \mp t s_{\alpha_1} = -0.2304 \mp 1.645 \times 0.0060$ $= -0.2304 \mp 0.00987$ = (-0.2406, -0.2203)The effect is significant.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 22.5	5: Co	nf. I	ntervals (Co	ont)
Para-	Mean	Std.	Confidence	
meter	Effect	Dev.	Interval	
μ	3.9423	0.0035	(3.9364, 3.9482)	
Processors				
W	-0.2304	0.0060	(-0.2406, -0.2203)	
Х	-0.0202	0.0060	(-0.0304,-0.0100)	
Υ	0.3603	0.0060	(0.3501, 0.3704)	
Z	-0.1096	0.0060	(-0.1198, -0.0995)	
Workloads				
Ι	0.1520	0.0070	(0.1402, 0.1637)	
J	-0.2475	0.0070	(-0.2592, -0.2358)	
К	0.0047	0.0070	(-0.0070, 0.0165)†	
L	-0.0599	0.0070	(-0.0717, -0.0482)	
М	0.1507	0.0070	(0.1390, 0.1624)	
□ The intervals are	$\dagger \Rightarrow N$ very na	lot signi arrow.	ficant	
Washington University in St. Louis		http://www.	cse.wustl.edu/~jain/cse567-17/	©2017 Raj Jain

Example 22.5: CI for Interactions

Workloads	W	X	Y	Z
Ι	(-0.0415, -0.0009)	(-0.0048, 0.0358)†	(-0.0171, 0.0236)†	(-0.0179, 0.0228)†
J	$(\ 0.0196, \ 0.0602)$	$(\ 0.0130, \ 0.0536)$	(-0.1272, -0.0865)	$(\ 0.0133,\ 0.0540)$
Κ	(-0.0650, -0.0243)	$(\ 0.0271,\ 0.0678)$	$(-0.0254, 0.0152)\dagger$	(-0.0180, 0.0226)†
\mathbf{L}	(0.0361, 0.0768)	(-0.1371, -0.0964)	(0.0850, 0.1257)	(-0.0654, -0.0247)
Μ	(-0.0508, -0.0101)	(0.0002, 0.0408)	(-0.0170, 0.0236)†	(-0.0137, 0.0270)†

 $\dagger \Rightarrow Not significant$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 22.5: Visual Tests

□ Approximately linear \Rightarrow normality is valid.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Summary

$$\int_{a} \sum_{j=1}^{a} \alpha_{j} = 0; \quad \sum_{i=1}^{b} \beta_{i} = 0; \quad \sum_{j=1}^{a} \gamma_{ij} = 0 \forall i; \\ \sum_{i=1}^{b} \gamma_{ij} = 0 \forall j; \quad \sum_{k=1}^{r} e_{ijk} = 0 \forall i, j$$
SSE has ab(r-1) degrees of freedom
SNeed to conduct F-tests for MSA/MSE, MSB/MSE, MSAB/MSE

Exercise 22.1

Measured CPU times for three processors A1, A2, and A3, on five workloads B1, B2, through B5 are shown in the table. Three replications of each experiment are shown. Analyze the data and answer the following:

- > Are the processors different from each other at 90% level of confidence?
- What percent of variation is explained by the processor-workload interaction?
- > Which effects in the model are not significant at 90% confidence.

		А	
В	A1	A2	A3
B1	3200	5120	8960
	3150	5100	8900
	3250	5140	8840
B2	4700	9400	19740
	4740	9300	19790
	4660	9500	19690
B3	3200	4160	7360
	3220	4100	7300
	3180	4220	7420
Β4	5100	5610	22340
	5200	5575	22440
	5000	5645	22540
B5	6800	12240	28560
	6765	12290	28360
	6835	12190	28760

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Homework 22

Submit answer to Exercise 22.1. Show all numerical values.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Scan This to Download These Slides Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

