

□ Used to compare alternatives of a single categorical variable.

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

For example, several processors, several caching schemes

Number of replications r =

$$y_{ij}$$
 = ith response with jth alternative

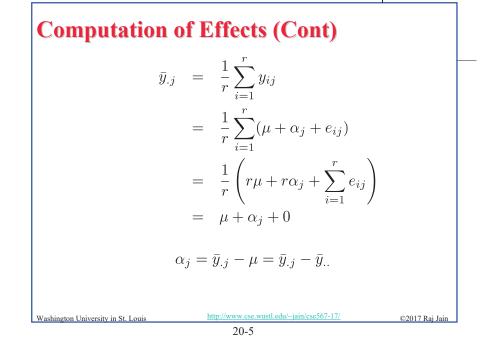
mean response μ

$$\alpha_i = \text{Effect of alternative j}$$

$$e_{ij} = \text{Error term}$$

$$\sum \alpha_j = 0$$

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse567-17/ 20-3

©2017 Rai Jain

Computation of Effects

$$\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + r \sum_{j=1}^{a} \alpha_j + \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}$$
$$= ar\mu + 0 + 0$$
$$\mu = \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = \bar{y}.$$

©2017 Rai Jair

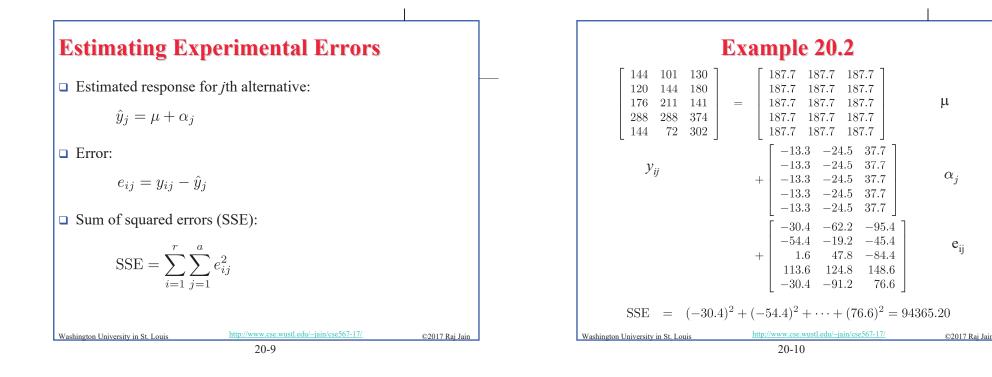
Example 20.1: Code Size Comparison

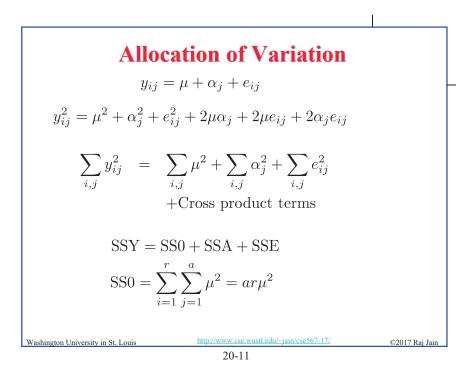
\mathbf{R}	\mathbf{V}	Ζ
144	101	130
120	144	180
176	211	141
288	288	374
144	72	302

Entries in a row are unrelated.
 (Otherwise, need a two factor analysis.)

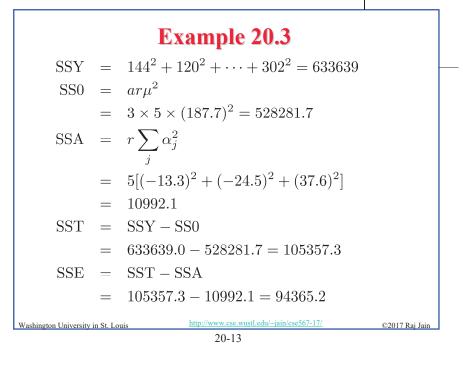
Exa	mple 20	.1 Code	Size (Co	nt)
	R	V	Z	
	144	101	130	
	120	144	180	
	176	211	141	
	288	288	374	
	144	72	302	
Col Sum	$\Sigma y_{.1} = 872$	$\Sigma y_{.2} = 816$	$\Sigma y_{.3} = 1127$	$\Sigma y_{} = 2815$
Col Mean	$\bar{y}_{.1} = 174.4$	$\bar{y}_{.2} = 163.2$	$\bar{y}_{.3} = 225.4$	$\mu = \bar{y}_{} = 187.7$
Col Effect	$\alpha_1 = \bar{y}_{.1} - \bar{y}_{}$	$\alpha_2 = \bar{y}_{.2} - \bar{y}_{}$	$\alpha_3 = \bar{y}_{.3} - \bar{y}_{}$	
	= -13.3	= -24.5	=37.7	
ashington University in	St. Louis	http://www.cse.wustl	.edu/~jain/cse567-17/	©2017 Raj Jair

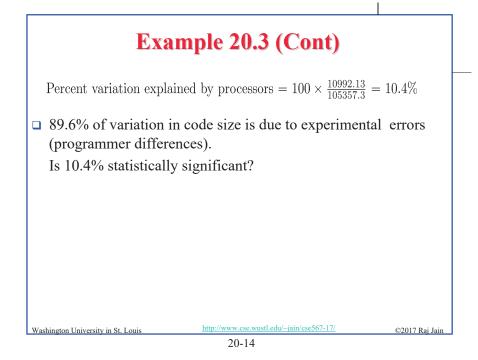
Example 20.1: Interpretation


20-6


http://www.cse.wustl.edu/~jain/cse567-17/

- □ Average processor requires 187.7 bytes of storage.
- □ The effects of the processors R, V, and Z are -13.3, -24.5, and 37.7, respectively. That is,
 - > R requires 13.3 bytes less than an average processor
 - > V requires 24.5 bytes less than an average processor, and
 - > Z requires 37.7 bytes more than an average processor.


Washington University in St. Louis


©2017 Rai Jair

Allocation of Variation (Cont) $SSA = \sum_{i=1}^{r} \sum_{j=1}^{a} \alpha_{j}^{2}$ $= r \sum_{j=1}^{a} \alpha_{j}^{2}$ Total variation of y (SST): $SST = \sum_{i,j} (y_{i,j} - \bar{y}_{..})^{2}$ $= \sum_{i,j} y_{ij}^{2} - ar \bar{y}_{..}^{2}$ = SSY - SS0 = SSA + SSE Washington University in St. Louis http://www.cs.wustl.edu/-jain/csc507-17/2 c2017 Raj Jain 20-12

Analysis of Variance (ANOVA)

- $\Box \text{ Importance} \neq \text{Significance}$
- □ Important \Rightarrow Explains a high percent of variation
- □ Significance

 \Rightarrow High contribution to the variation compared to that by errors.

- Degree of freedom
 - = Number of independent values required to compute

 $\begin{array}{rclrcl} \mathrm{SSY} &=& \mathrm{SS0} &+& \mathrm{SSA} &+& \mathrm{SSE} \\ \mathrm{ar} &=& 1 &+& (\mathrm{a-1}) &+& \mathrm{a(r-1)} \end{array}$

Note that the degrees of freedom also add up.

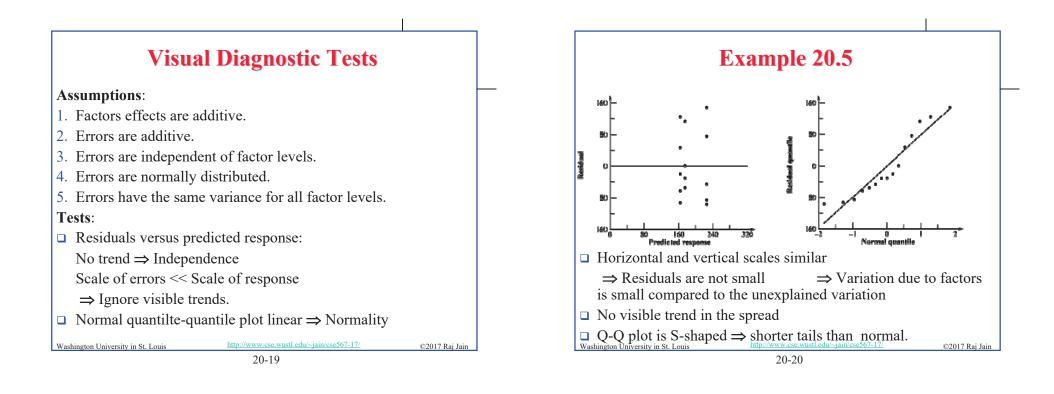
Washington University in St. Louis

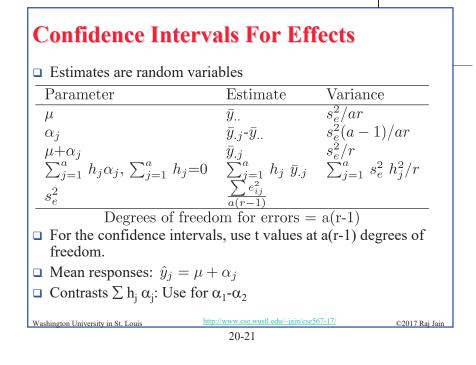
http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

F-Test

□ Purpose: To check if SSA is *significantly* greater than SSE.
 Errors are normally distributed ⇒ SSE and SSA have chi-square distributions.


The ratio $(SSA/v_A)/(SSE/v_e)$ has an F distribution. where v_A =a-1 = degrees of freedom for SSA v_e =a(r-1) = degrees of freedom for SSE

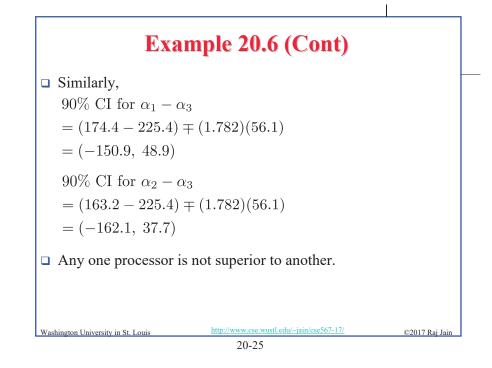

Computed ratio > $F_{[1-\alpha; v_A, v_e]}$ \Rightarrow SSA is significantly higher than SSE. SSA/ v_A is called mean square of A or (MSA). Similary, MSE=SSE/ v_e

Washington University in St. Louis

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
у	SSY= $\sum y_{ij}^2$		ar			
$\bar{y}_{}$	$SS0=ar\mu^2$		1			
у- <i>ÿ</i>	SST=SSY-SS0	100	ar-1			
А	$\mathrm{SSA} = r\Sigma \ \alpha_i^2$	$100\left(\frac{\mathrm{SSA}}{\mathrm{SST}}\right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{MSA}{MSE}$	$F \begin{bmatrix} 1 - \alpha; a - 1, \\ a(r - 1) \end{bmatrix}$
е	SSE=SST- SSA	$100\left(\frac{\text{SSE}}{\text{SST}}\right)$	a(r-1)	$MSE = \frac{SSE}{a(r-1)}$		a(t-1)]
	Jniversity in St. Louis	L.		vustl.edu/~jain/cse567-	17/	©2017 Raj Jain

Compo-	Sum of	%Variation	DF	Mean	F-	
nent	Squares			Square	Comp.	Л
у	633639.00					
$\bar{y}_{}$	528281.69					
у- <i>ӯ</i>	105357.31	100.0%	14			
А	10992.13	10.4%	2	5496.1	0.7	
Errors	94365.20	89.6%	12	7863.8		
	$s_e = \sqrt{MS}$	$\overline{E} = \sqrt{7863.7}$	$\overline{7} = 88$	8.68		
Compu	ited F-value	< F from Tal	ble			
		n the code sizes and not bec he processors	ause	•		t

Example 20.6: Code Size Comparison


Error variance s_e^2 =	$=\frac{94365.2}{12}=7863.8$	-
	$= \sqrt{\text{(Var. of errors)}}$ $= 88.7$	
Std Dev of $\mu = s_e / \sqrt{1}$	$\sqrt{ar} = 88.7/\sqrt{15} = 22.9$	
Std Dev of $\alpha_j =$	$s_e \sqrt{\{(a-1)/(ar)\}}$ 88.7 $\sqrt{(2/15)} = 32.4$	
Washington University in St. Louis	http://www.cse.wustl.edu/~jain/cse567-17/ 20-22	©2017 Raj Jain
	20-22	

Example 20.6 (Cont) □ For 90% confidence, $t_{[0.95; 12]} = 1.782$. □ 90% confidence intervals: = 187.7 \mp (1.782)(22.9) = (146.9, 228.5) μ $= -13.3 \pm (1.782)(32.4) = (-71.0, 44.4)$ α_1 $\alpha_2 = -24.5 \mp (1.782)(32.4) = (-82.2, 33.2)$ $= 37.6 \mp (1.782)(32.4) = (-20.0, 95.4)$ α_3 □ The code size on an average processor is significantly different from zero. □ Processor effects are not significant. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/ ©2017 Raj Jain

Example 20.6 (Cont)

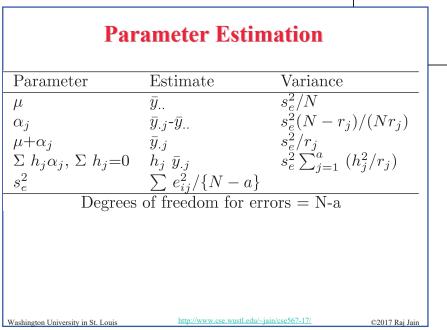
□ Using $h_1=1, h_2=-1, h_3=0, (\sum h_j=0)$:
Mean $\alpha_1 - \alpha_2 = \bar{y}_{.1} - \bar{y}_{.2} = 174.4 - 163.2 = 11.2$
Std dev of $\alpha_1 - \alpha_2 = s_e \sqrt{(\sum h_j^2/r)}$
$= 88.7\sqrt{(2/5)} = 56.1$
90% CI for $\alpha_1 - \alpha_2 = 11.2 \mp (1.782)(56.1)$
= (-88.7, 111.1)
□ CI includes zero \Rightarrow one isn't superior to other.
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/ ©2017 Raj Jain

20-24

Unequal Sample Sizes

 $y_{ij} = \mu + \alpha_j + e_{ij}$

By definition:


 $\sum_{j=1}^{a} r_j \alpha_j = 0$

Here, r_j is the number of observations at *j*th level.
 N =total number of observations:

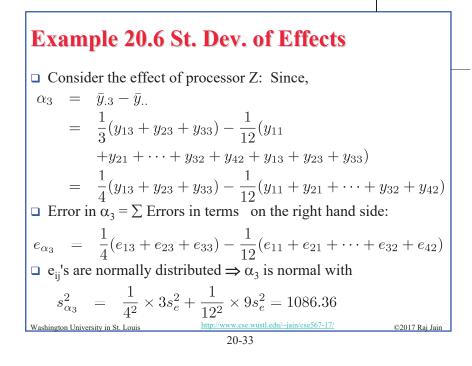
$$N = \sum_{j=1}^{a} r_j$$

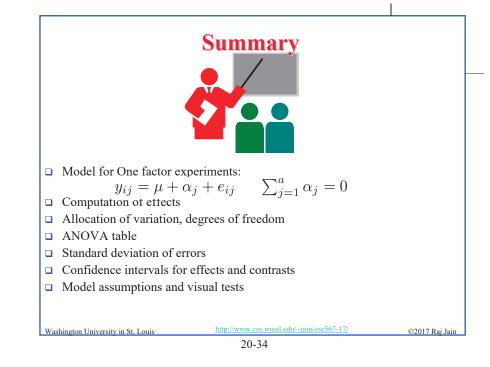
Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse567-17/</u> 20-26

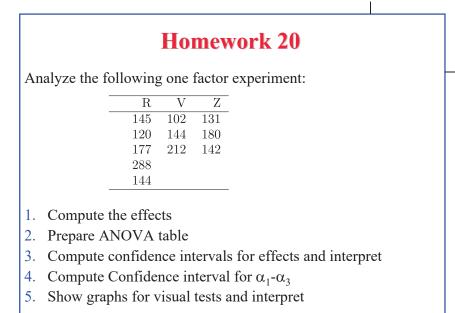
©2017 Raj Jair

		\mathbf{DF}	Mean	F-	F-
Squares		N	Square	Comp.	Table
$SSY = \sum_{ij} y_{ij}^2$		N			
	100	-			
			$MSA = \frac{SSA}{a-1}$	MSA MSE	$F_{[1-\alpha;a-1,N-a]}$
SSE=SST- SSA	$100\left(\frac{SSE}{SST}\right)$			101012	
	$SS0 = N\mu^{2}$ SST = SSY-SS0 $SSA = \sum_{j=1}^{a} r_{j}\alpha_{j}^{2}$	$SS0 = N\mu^{2}$ $SST = SSY - SS0 \qquad 100$ $SSA = \sum_{j=1}^{a} r_{j}\alpha_{j}^{2} \qquad 100 \left(\frac{SSA}{SST}\right)$	$\begin{array}{ccc} \mathrm{SS0}{=}N\mu^2 & 1 \\ \mathrm{SST}{=}\mathrm{SSY}{-}\mathrm{SS0} & 100 & \mathrm{N}{-}1 \\ \mathrm{SSA} = \sum_{j=1}^a r_j \alpha_j^2 & 100 \left(\frac{\mathrm{SSA}}{\mathrm{SST}}\right) & \mathrm{a}{-}1 \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} \mathrm{SS0} = N\mu^2 & & 1\\ \mathrm{SST} = \mathrm{SSY} - \mathrm{SSO} & 100 & \mathrm{N-1}\\ \mathrm{SSA} = \sum_{j=1}^a r_j \alpha_j^2 & 100 \left(\frac{\mathrm{SSA}}{\mathrm{SST}}\right) & \mathrm{a-1} & \mathrm{MSA} = \frac{\mathrm{SSA}}{a-1} & \frac{\mathrm{MSA}}{\mathrm{MSE}} \end{array}$

144 101 130 120 144 180 176 211 141 288 288 144 144 Column Sum 872 744 451 2067 Column Mean 174.40 186.00 150.33 172.25 Column effect 2.15 13.75 -21.92 132.25	144				
176 211 141 288 288 144 144 Column Sum 872 744 451 2067 Column Mean 174.40 186.00 150.33 172.25 Column effect 2.15 13.75 -21.92 172.25	144	101	130		
288 288 144 144 Column Sum 872 744 451 2067 Column Mean 174.40 186.00 150.33 172.25 Column effect 2.15 13.75 -21.92	120	144	180		
144 Column Sum 872 744 451 2067 Column Mean 174.40 186.00 150.33 172.25 Column effect 2.15 13.75 -21.92 172.25	176	211	141		
Column Sum 872 744 451 2067 Column Mean 174.40 186.00 150.33 172.25 Column effect 2.15 13.75 -21.92 172.25	288	288			
Column Mean 174.40 186.00 150.33 172.25 Column effect 2.15 13.75 -21.92 172.25 All means are obtained by dividing by the number of 1000 1000 1000	144				
Column effect2.1513.75-21.92All means are obtained by dividing by the number of	872	744	451	2067	
All means are obtained by dividing by the number of	174.40	186.00	150.33		172.25
	2.15	13.75	-21.92		
	2.15 nined by	13.75	-21.92	mber o	
		176 288 144 872 174.40 2.15 inned by d.	176 211 288 288 144 872 744 174.40 186.00 2.15 13.75 inned by dividing I d.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

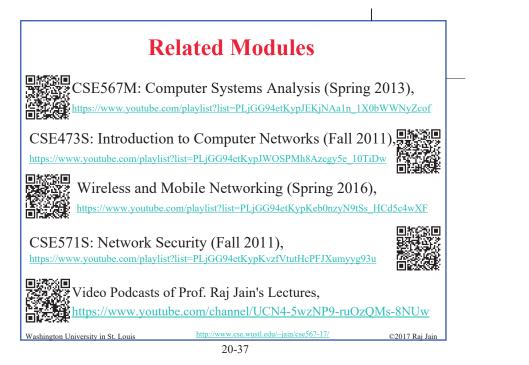

Example 20.6: Analysis of Variance


$\begin{bmatrix} 144 & 101 & 130\\ 120 & 144 & 180\\ 176 & 211 & 141\\ 288 & 288\\ 144 \end{bmatrix} =$	$\begin{bmatrix} 172.25 & 172.25 & 172.25 \\ 172.25 & 172.25 & 172.25 \\ 172.25 & 172.25 & 172.25 \\ 172.25 & 172.25 & 172.25 \\ 172.25 & & \end{bmatrix} + \begin{bmatrix} 2.15 & 13.75 \\ 2.15 & 13.75$	$-21.92 \\ -21.92$
Washington University in St. Louis	http://www.cse.wustl.edu/~jain/cse567-17/ 20-30	©2017 Raj Jain


]	Exa	mpl	e 2	0.6 A	NO	VA (Co	ont)	
□ Sums	of Sc	uares:						
SSY	=	$\sum y_{i}^{j}$	$_{ij}^{2} = 3$	397375				
SS0	=	$N\mu^2$	= 35	6040.75)			
SSA	=	$5\alpha_1^2$ +	$-4\alpha_{2}^{2}$					
		$+3\alpha_3^2$	= 2	220.38				
SSE	=	(-30)	$(.40)^2$	+(-54)	$(4.40)^2$	$^{2}+\cdots$		
		+(-9)	$(0.33)^{2}$	$^{2} = 391$	13.87			
SST	=	SSY	-SS	0 = 413	34.25	ó		
Degree	es of	Freedo	om:					
SSY	=	SS0	+	SSA	+	SSE		
Ν	=	1	+	(a-1)	+	N-a		
12	=	1	+	2	+	9		
Washington Unive	ersity in S	t. Louis				du/~jain/cse567-17/		©2017 Raj Ja
				20	-31			

Example 20.6 ANOVA Table

Comoro	Current	%Variation	DF	Mean	F-					
Compo-	Sum of	% variation	DF		-	-				
nent	Squares			Square	Comp.	Table				
У	397375.00									
$\bar{y}_{}$	356040.75									
y- $\overline{y}_{}$	41334.25	100.00%	11							
А	2220.38	5.37%	2	1110.19	0.26	3.01				
Errors	39113.87	94.63%	9	4345.99						
$s_e = \sqrt{\text{MSE}} = \sqrt{4345.99} = 65.92$										
• Conclusion : Variation due processors is insignificant as										
compared to that due to modeling errors.										



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jair

