2^kr Factorial Designs

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

- Computation of Effects
- Estimation of Experimental Errors
- Allocation of Variation
- □ Confidence Intervals for Effects
- Confidence Intervals for Predicted Responses
- □ Visual Tests for Verifying the assumptions
- Multiplicative Models

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

2^kr Factorial Designs

□ *r* replications of 2^k Experiments
 ⇒ 2^kr observations.
 ⇒ Allows estimation of experimental errors.

□ Model:

 $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$ • e = Experimental error

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Computation of Effects

Simply use means of r measurements

Ι	А	В	ΑB	У	Mean \bar{y}
1	-1	-1	1	(15, 18, 12)	15
1	1	-1	-1	(45,48,51)	48
1	-1	1	-1	(25,28,19)	24
1	1	1	1	$(75,\ 75,\ 81)$	77
164	86	38	20		total
41	21.5	9.5	5		total/4

□ Effects: $q_0 = 41$, $q_A = 21.5$, $q_B = 9.5$, $q_{AB} = 5$.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Estimation of Experimental Errors

Estimated Response:

 $\hat{y}_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi}$

Experimental Error = Measured - Estimated

$$e_{ij} = y_{ij} - \hat{y}_i$$

= $y_{ij} - q_0 - q_A x_{Ai} - q_B x_{Bi} - q_{AB} x_{Ai} x_{Bi}$
 $\sum_{i,j} e_{ij} = 0$

Sum of Squared Errors: $SSE = \sum \sum e_{ij}^2$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

 $2^2 r$

 $i=1 \ i=1$

©2017 Raj Jain

Experimental Errors: Example

Estimated Response:

 $\hat{y}_1 = q_0 - q_A - q_B + q_{AB} = 41 - 21.5 - 9.5 + 5 = 15$

• Experimental errors:

 $e_{11} = y_{11} - \hat{y}_1 = 15 - 15 = 0$

		Ef	fect		Estimated	Me	easur	red			
i	Ι	А	В	AB	Response	Responses		E	Errors		
	41	21.5	9.5	5	\hat{y}_i	y_{i1}	y_{i2}	y_{i3}	e_{i1}	e_{i2}	e_{i3}
1	1	-1	-1	1	15	15	18	12	0	3	-3
2	1	1	-1	-1	48	45	48	51	-3	0	3
3	1	-1	1	-1	24	25	28	19	1	4	-5
4	1	1	1	1	77	75	75	81	-2	-2	4
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/								©2017	' Raj Jain		

Allocation of Variation

□ Total variation or total sum of squares:

$$SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2$$

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + e_{ij}$

$$\sum_{i,j} (y_{ij} - \bar{y}_{..})^2 = 2^2 r q_A^2 + 2^2 r q_B^2 + 2^2 r q_{AB}^2 + \sum_{i,j} e_{ij}^2$$

SST = SSA + SSB + SSAB + SSE

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 18.3: Memory-Cache Study

SSY =
$$15^2 + 18^2 + 12^2 + 45^2 + \dots + 75^2 + 75^2 + 81^2$$

= 27204

SS0 =
$$2^2 r q_0^2 = 12 \times 41^2 = 20172$$

SSA =
$$2^2 r q_A^2 = 12 \times (21.5)^2 = 5547$$

SSB =
$$2^2 r q_B^2 = 12 \times (9.5)^2 = 1083$$

$$SSAB = 2^2 r q_{AB}^2 = 12 \times 5^2 = 300$$

SSE =
$$27204 - 2^2 \times 3(41^2 + 21.5^2 + 9.5^2 + 5^2)$$

$$= 102$$

$$SST = SSY - SS0$$

= 27204 - 20172 = 7032

Washington University in St. Louis

Example 18.3 (Cont)

- SSA + SSB + SSAB + SSE
- = 5547 + 1083 + 300 + 102
- = 7032 = SST

Factor A explains 5547/7032 or 78.88%Factor B explains 15.40%Interaction AB explains 4.27%1.45% is unexplained and is attributed to errors.

Washington University in St. Louis

Confidence Intervals For Effects

Effects are random variables.

□ Errors ~ N(0, σ_{e}) ⇒ y ~ N(^y., σ_{e}) $q_{0} = \frac{1}{2^{2}r} \sum_{i=i}^{j} y_{ij}$

□ q_0 = Linear combination of normal variates ⇒ q_0 is normal with variance $\sigma_e^2/(2^2r)$

Variance of errors:

$$s_e^2 = \frac{1}{2^2(r-1)} \sum_{ij} e_{ij}^2 = \frac{\text{SSE}}{2^2(r-1)} \Delta MSE$$

□ Denominator = $2^2(r-1) = #$ of independent terms in SSE ⇒ SSE has $2^2(r-1)$ degrees of freedom. Estimated variance of q_0 : $s_{q_0}^2 = s_e^2/(2^2r)$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Conf. Intervals For Effects (Cont)

□ Similarly,

$$s_{q_A} = s_{q_B} = s_{q_{AB}} = \frac{s_e}{\sqrt{2^2 r}}$$

 □ Confidence intervals (CI) for the effects: q_i ∓ t_[1-α/2;2²(r-1)]s_{q_i}

 □ CI does not include a zero ⇒ significant

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 18.4

□ For Memory-cache study: Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^2(r-1)}} = \sqrt{\frac{102}{8}} = \sqrt{12.75} = 3.57$$

Standard deviation of effects:

$$s_{q_i} = s_e / \sqrt{(2^2 r)} = 3.57 / \sqrt{12} = 1.03$$

 \Box For 90% Confidence: $t_{[0.95,8]} = 1.86$

□ Confidence intervals: $q_i \mp (1.86)(1.03) = q_i \mp 1.92$ $q_0 = (39.08, 42.91)$ $q_A = (19.58, 23.41)$ $q_B = (7.58, 11.41)$ $q_{AB} = (3.08, 6.91)$ □ No zero crossing ⇒ All effects are significant.

Confidence Intervals for Contrasts \Box Contrast: Linear combination with Σ coefficients = 0 $\sum h_i q_i$ with $\sum h_i = 0$ For example, $q_A - q_B$ or $q_A + q_B - 2q_{AB}$ \Box Mean of $\sum h_i q_i = \sum h_i E[q_i]$ □ Variance of $\sum h_i q_i$ $s_{\sum h_i q_i}^2 = \frac{s_e^2 \sum h_i^2}{22\pi}$ □ For 100(1- α)% confidence interval, use $t_{[1-\alpha/2; 2^2(r-1)]}$.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 18.5

Memory-cache study

u = q_A+ q_B - 2q_{AB}
Coefficients= 0, 1, 1, and -2
$$\Rightarrow$$
 Contrast
Mean $\bar{u} = 21.5 + 9.5 - 2 \times 5 = 21$
Variance $s_u^2 = \frac{s_e^2 \times 6}{2^2 \times 3} = 6.375$
Standard deviation $s_u = \sqrt{6.375} = 2.52$
t_[0.95;8]=1.86
90% Confidence interval for u:
 $\bar{u} \mp ts_u = 21 \mp 1.86 \times 2.52 = (16.31, 25.69)$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Conf. Interval For Predictions

D Mean response \hat{y} :

$$\hat{y} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

□ The standard deviation of the mean of m responses:

$$s_{\hat{y}_m} = s_e \left(\frac{1}{n_{\text{eff}}} + \frac{1}{m}\right)^{1/2}$$

$$n_{\text{eff}} = \text{Effective deg of freedom}$$

$$= \frac{\text{Total number of runs}}{1 + \text{Sum of DFs of params used in } \hat{y}}$$

$$= \frac{2^2 r}{5}$$
Vashington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/ ©2017 Rai Jain

Conf. Interval for Predictions (Cont)

 $100(1-\alpha)\%$ confidence interval:

$$\hat{y} \mp t_{[1-\alpha/2;2^2(r-1)]} s_{\hat{y}_m}$$

• A single run (m=1): $s_{\hat{y}_1} = s_e \left(\frac{5}{2^2r} + 1\right)^{1/2}$

□ Population mean (m=∞):
$$s_{\hat{y}} = s_e \left(\frac{5}{2^2 r}\right)^{1/2}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 18.6: Memory-cache Study

• For $x_A = -1$ and $x_B = -1$:

□ A single confirmation experiment:

$$\hat{y}_1 = q_0 - q_A - q_B + q_{AB}$$

= $41 - 21.5 - 9.5 + 5 = 15$

Standard deviation of the prediction:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2r} + 1\right)^{1/2} = 3.57\sqrt{\frac{5}{12} + 1} = 4.25$$

□ Using $t_{[0.95;8]} = 1.86$, the 90% confidence interval is: $15 \mp 1.86 \times 4.25 = (7.09, 22.91)$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 18.6 (Cont)

□ Mean response for 5 experiments in future:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2r} + \frac{1}{m}\right)^{1/2}$$
$$= 3.57\sqrt{\frac{5}{12} + \frac{1}{5}} = 2.80$$

□ The 90% confidence interval is:

 $15 \mp 1.86 \times 2.80 = (9.79, 20.21)$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 18.6 (Cont)

□ Mean response for a large number of experiments in future:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2 r}\right)^{1/2} = 3.57 \sqrt{\frac{5}{12}} = 2.30$$

- □ The 90% confidence interval is: $15 \mp 1.86 \times 2.30 = (10.72, 19.28)$
- □ Current mean response: Not for future. Use contrasts formula.

$$s_{\hat{y}_1} = \sqrt{\frac{s_e^2 \sum h_i^2}{2^2 r}} = \sqrt{\frac{12.75 \times 4}{12}} = 2.06$$

□ 90% confidence interval:

 $15 \mp 1.86 \times 2.06 = (11.17, 18.83)$ Washington University in St. Louis

Homework 18A

Updated Exercise 18.1: The following table lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Determine the effects.

 \mathbf{a}

Table 1	18.12 2^2 (B Experin	nental	l Design	Exerci	ise		
Workload		Processor						
	А			В				
Ι	(41.16,	39.02, 42	.56)	(65.17, 0)	69.25,	64.23)		
J	(53.50,	55.50, 50	.50)	(50.08, 4)	48.98,	47.10)		
Washington University in	St. Louis	<u>http://www.cs</u>	e.wustl.edu/~	-jain/cse567-17/		©2017 Raj Jain		
		18-2	20					

Assumptions

- 1. Errors are statistically independent.
- 2. Errors are additive.
- 3. Errors are normally distributed.
- 4. Errors have a constant standard deviation σ_{e} .
- 5. Effects of factors are additive
 ⇒ observations are independent and normally distributed with constant variance.

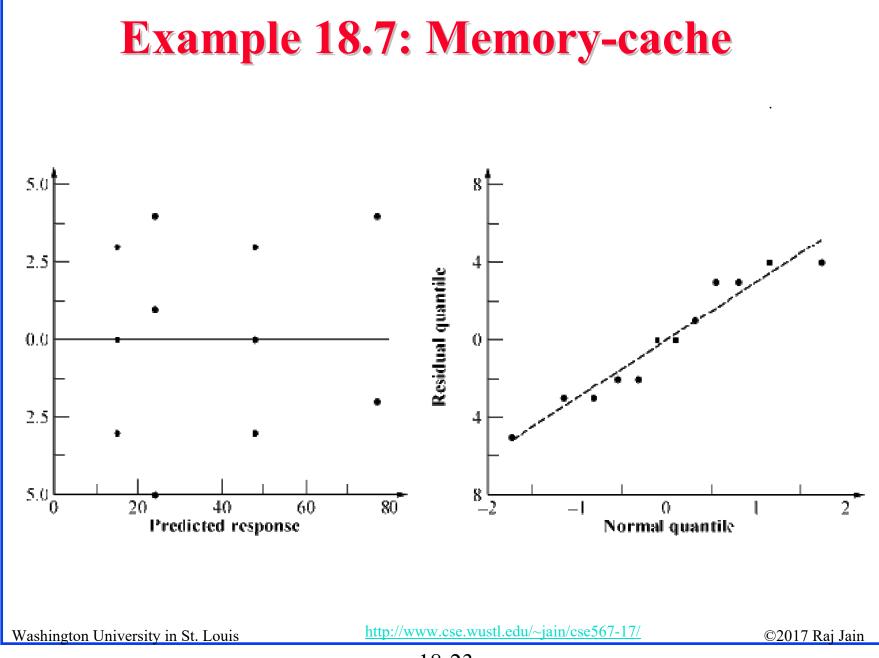
Visual Tests

1. Independent Errors:

- \square Scatter plot of residuals versus the predicted response \hat{y}_i
- Magnitude of residuals < Magnitude of responses/10
 ⇒ Ignore trends
- □ Plot the residuals as a function of the experiment number
- $\Box \quad \text{Trend up or down} \Rightarrow \text{other factors or side effects}$
- **2.** Normally distributed errors: Normal quantile-quantile plot of errors
- Constant Standard Deviation of Errors:
 Scatter plot of y for various levels of the factor
 Spread at one level significantly different than that at other
 ⇒ Need transformation

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/



Residuals

Multiplicative Models

□ Additive model:

 $y_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$

Not valid if effects do not add.
 E.g., execution time of workloads.
 *i*th processor speed= v_i instructions/second.
 *j*th workload Size= w_i instructions

□ The two effects multiply. Logarithm ⇒ additive model: Execution Time $y_{ij} = w_j/v_i$ $\log(y_{ij}) = \log(w_j) - \log(v_i)$

Correct Model:

$$y'_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$$

Where, $y'_{ij} = \log(y_{ij})$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Multiplicative Model (Cont)

Taking an antilog of effects:

 $u_A = 10^{qA}$, $u_B = 10^{qB}$, and $u_{AB} = 10^{qAB}$

 \Box u_A = ratio of MIPS rating of the two processors

- \Box u_B = ratio of the size of the two workloads.
- □ Antilog of additive mean $q_0 \Rightarrow$ geometric mean

$$\dot{y} = 10^{q_0} = (y_1 y_2 \cdots y_n)^{1/n} \quad n = 2^2 r$$

Example 18.8: Execution Times

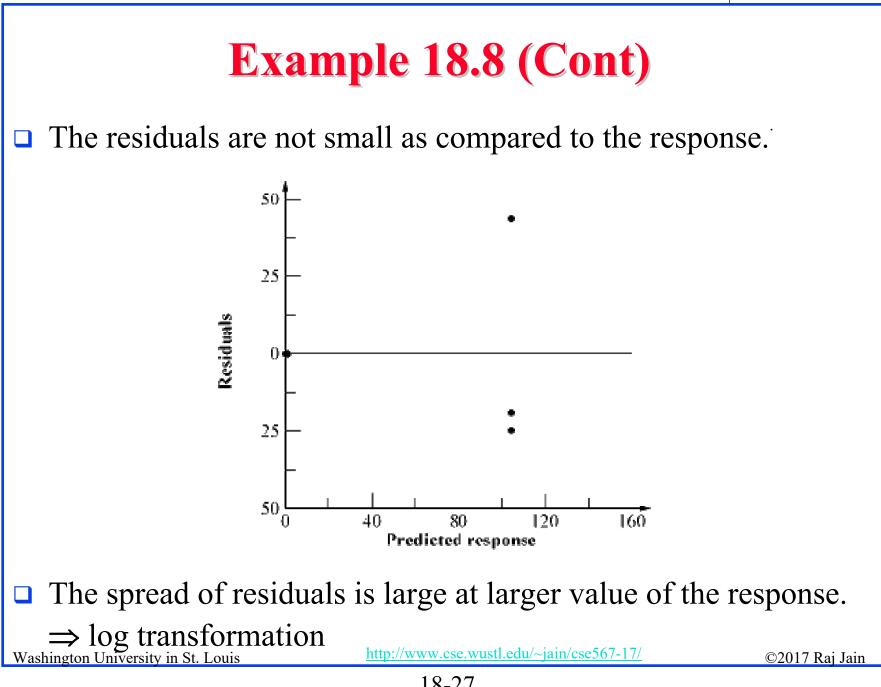
Analysis Using an Additive Model								
Ι	А	В	AB	У	Mean \bar{y}			
1	-1	-1	1	(85.10, 79.50, 147.90)	104.170			
1	1	-1	-1	$(\ 0.891, \ 1.047, \ 1.072)$	1.003			
1	-1	1	-1	$(\ 0.955, \ 0.933, \ 1.122)$	1.003			
1	1	1	1	(0.0148, 0.0126, 0.0118)	0.013			
106.19	-104.15	-104.15	102.17	total				
26.55	-26.04	-26.04	25.54	total/4				

Additive model is not valid because:

- ❑ Physical consideration ⇒ effects of workload and processors do not add. They multiply.
- □ Large range for y. $y_{max}/y_{min} = 147.90/0.0118$ or 12,534 ⇒ log transformation
- □ Taking an arithmetic mean of 104.17 and 0.013 is inappropriate.

Washington University in St. Louis

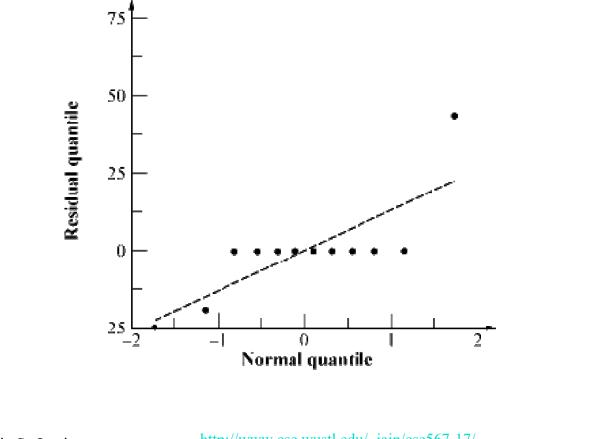
http://www.cse.wustl.edu/~jain/cse567-17/



¹⁸⁻²⁷

Example 18.8 (Cont)

Residual distribution has a longer tail than normal



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Analysis Using Multiplicative Model

C	Data After Log Transformation							
Ι	А	В	AB	У	Mean \bar{y}			
1	-1	-1	1	(1.93, 1.90, 2.17)	2.00			
1	1	-1	-1	(-0.05, 0.02, 0.03)	0.00			
1	-1	1	-1	(-0.02, -0.03, 0.05)	0.00			
1	1	1	1	(-1.83, -1.90, -1.93)	-1.89			
0.11	-3.89	-3.89	0.11	total				
0.03	-0.97	-0.97	0.03	total/4				

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Variation Explained by the Two Models

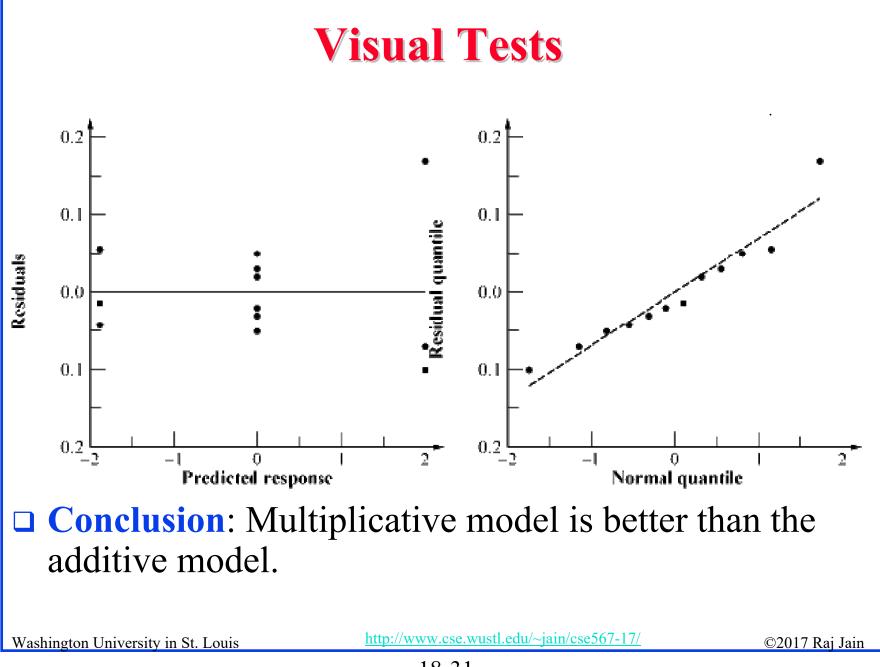
		Additiv	re Model	Multiplicative Model			
Factor	Effect	% Var.	Conf. Interval	Effect	% Var.	Conf. Interval	
Ι	26.55		(16.35, 36.74)	0.03		(-0.02, 0.07)†	
А	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)	
В	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)	
AB	25.54	29.0%	(15.35, 35.74)	0.03	0.0%	(-0.02, 0.07)†	
е		10.8%	Not Cimpificant		0.2%		

 $\dagger \Rightarrow \text{Not Significant}$

□ With multiplicative model:

- > Interaction is almost zero.
- > Unexplained variation is only 0.2%

Washington University in St. Louis



Interpretation of Results

 $\log(y) = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$

 $\Rightarrow y = 10^{q_0} 10^{q_A x_A} 10^{q_B x_B} 10^{q_{AB} x_A x_B} 10^e$

 $= 10^{0.03} 10^{-0.97x_A} 10^{-0.97x_B} 10^{0.03x_Ax_B} 10^e$

 $= 1.07 \times 0.107^{x_A} \times 0.107^{x_B} \times 1.07^{x_A x_B} 10^e$

- □ The time for an average processor on an average benchmark is 1.07.
- The time on processor A₁ is 9.35 times (0.107⁻¹) that on an average processor. The time on A₂ is 1/9.35 (0.107¹) of that on an average processor.
- \square MIPS rate for A₂ is 87.4 times that of A₁.
- **\square** Benchmark B_1 executes 87.4 times more instructions than B_2 .
- □ The interaction is negligible.

 $\Rightarrow \underset{\text{Washington University in St. Louis}}{\text{Results apply to all benchmarks and processors.}}$

©2017 Raj Jain

Transformation Considerations

- □ y_{max}/y_{min} small \Rightarrow Multiplicative model results similar to additive model.
- Many other transformations possible.
- □ Box-Cox family of transformations:

$$w = \begin{cases} \frac{y^a - 1}{ag^{a-1}}, & a \neq 0\\ (\ln y)g, & a = 0 \end{cases}$$

• Where g is the geometric mean of the responses:

$$g = (y_1 y_2 \cdots y_n)^{\mathbf{1}_n}$$

- w has the same units as y.
- □ *a* can have any real value, positive, negative, or zero.
- □ Plot SSE as a function of $a \Rightarrow$ optimal a
- Knowledge about the system behavior should always take precedence over statistical considerations.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

General 2^kr Factorial Design

□ Model:

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + \dots + e_{ij}$

□ Parameter estimation:

 $q_j = \frac{1}{2^k} \sum_{i=1}^{2^k} S_{ij} \bar{y}_i$

 $S_{ij} = (i,j)$ th entry in the sign table.

□ Sum of squares:

$$SSY = \sum_{i=1}^{2^{k}} \sum_{j=1}^{r} y_{ij}^{2}$$

$$SS0 = 2^{k} r q_{0}^{2}$$

$$SST = SSY - SS0$$

$$SSj = 2^{k} r q_{j}^{2} \qquad j = 1, 2, \dots, 2^{k} - 1$$

$$SSE = SST - \sum_{j=1}^{2^{k} - 1} SSj$$

$$SST = SSY - SS0 = \sum_{j=1}^{2^{k}} SSj + SSE$$
$$2^{k}r - 1 = 2^{k}r - 1 = \sum_{j=1}^{2^{k}} 1 + 2^{k}(r-1)$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

¹⁸⁻³⁴

General 2^kr Factorial Design (Cont)

- □ Percentage of y's variation explained by *j*th effect = $(SSj/SST) \times 100\%$
- Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}}$$

□ Standard deviation of effects:

$$s_{q_0} = s_{q_A} = s_{q_B} = s_{q_{AB}} = s_e / \sqrt{2^k r}$$

□ Variance of contrast $\sum h_i q_i$, where $\sum h_i = 0$ is:

$$s_{\Sigma h_i q_i}^2 = (s_e^2 \sum h_i^2)/2^k r$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

General 2^kr Factorial Design (Cont)

Standard deviation of the mean of m future responses:

$$s_{\hat{y}_p} = s_e \left(\frac{1+2^k}{2^k r} + \frac{1}{m}\right)^{1/2}$$

- Confidence intervals are calculated using t_[1-α/2;2^k(r-1)].
 Modeling assumptions:
 - > Errors are IID normal variates with zero mean.
 - Errors have the same variance for all values of the predictors.
 - > Effects and errors are additive.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Visual Tests for 2^kr Designs

- □ The scatter plot of errors versus predicted responses should not have any trend.
- The normal quantile-quantile plot of errors should be linear.
- Spread of y values in all experiments should be comparable.

Example 18.9: A 2³3 Design

									•
I	А	В	С	A B	A C	ВC	ABC	У	Mean $\bar{\mathbf{y}}$
1	-1	-1	-1	1	1	1	-1	(14, 16, 12)	14
1	1	-1	-1	-1	-1	1	1	(22, 18, 20)	20
1	-1	1	-1	-1	1	-1	1	(11, 15, 19)	15
1	1	1	-1	1	-1	-1	-1	(34, 30, 35)	33
1	-1	-1	1	1	-1	-1	1	(46, 42, 44)	44
1	1	-1	1	-1	1	-1	-1	(58, 62, 60)	60
1	-1	1	1	-1	-1	1	-1	(50, 55, 54)	53
1	1	1	1	1	1	1	1	(86, 80, 74)	80
319	67	43	155	23	19	15	-1	total	
39.87	8.375	5.375	19.37	2.875	2.375	1.875	-0.125	total/8	

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

□ Sum of Squares:

-			
	Compo-	Sum of	Percent
	nent	Squares	Variation
	у	$4.9\mathrm{E}4$	
	$ar{y}$	$3.8\mathrm{E4}$	
	y- $ar{y}$	$1.1\mathrm{E}4$	100.00%
	А	1683.0	14.06%
	В	693.3	5.79%
	\mathbf{C}	9009.0	75.27%
	AB	198.3	1.66%
	AC	135.4	1.13%
	BC	84.4	0.70%
	ABC	0.4	0.00%
	Errors	164.0	1.37%
Washington University in St. Lou	iis	http://www.cse.wustl	.edu/~jain/cse567-17/

©2017 Raj Jain

18-39

The errors have 2³(3-1) or 16 degrees of freedom. Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}} = \sqrt{\frac{164}{16}} = 3.20$$

□ Standard deviation of effects:

$$s_{q_i} = s_e / \sqrt{(2^3 3)} = 3.20 / \sqrt{24} = 0.654$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

□ % Variation:

Washington University in St.

Compo-	Sum of	Percent
nent	Squares	Variation
У	$4.9\mathrm{E4}$	
$ar{y}$	$3.8\mathrm{E4}$	
у- \overline{y}	$1.1\mathrm{E4}$	100.00%
А	1683.0	14.06%
В	693.3	5.79%
\mathbf{C}	9009.0	75.27%
AB	198.3	1.66%
AC	135.4	1.13%
BC	84.4	0.70%
ABC	0.4	0.00%
Errors	164.0	1.37%
. Louis	http://www.cse.wust	l.edu/~jain/cse567-17/

 \Box t_[0.90, 16]=1.337 □ 80% confidence intervals for parameters: $q_i \mp (1.337)(0.654)$ $= q_i \mp 0.874$ $q_0 = (39.00, 40.74)$ $q_A = (7.50, 9.25)$ $q_B = (4.50, 6.25)$ $q_C = (18.50, 20.24)$ $q_{AB} = (2.00, 3.75)$ $q_{AC} = (1.50, 3.25)$ $q_{BC} = (1.00, 2.75)$ $q_{ABC} = (-1.00, 0.75)$

□ All effects except q_{ABC} are significant.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

□ For a single confirmation experiment (m = 1)
 With A = B = C = -1:

$$\hat{y} = 14$$

$$s_{\hat{y}} = s_e \left(\frac{9}{2^k r} + \frac{1}{m}\right)^{1/2}$$

$$= 3.2 \left(\frac{9}{24} + 1\right)^{1/2}$$

$$= 3.75$$

■ 80% confidence interval:

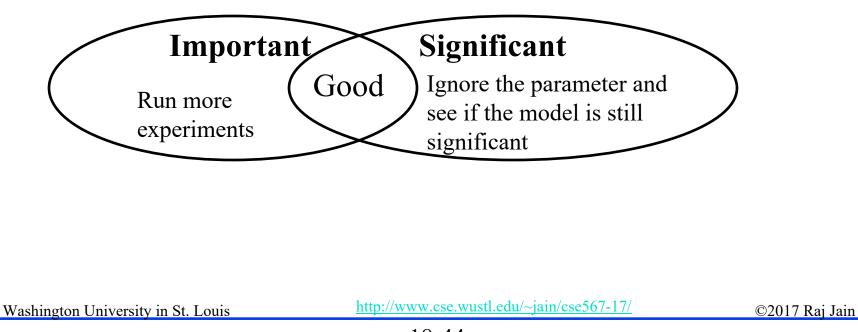
$$14 \mp 1.337 \times 3.75 = 14 \mp 5.02 = (8.98, 19.02)$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Importance vs. Significance

- Important = Parameters or models that explain a high percent of variation
- Significant = Parameters or models whose confidence interval does not include zero



Case Study 18.1: Garbage collection

Factors and Levels					
Variable	Factor	-1	1		
Α	Workload	Single Task	Several parallel tasks		
В	Compiler	Simple	Deallocating		
C	Limbo List	Enabled	Disabled		
D	Chunk Size	4K bytes	16K bytes		

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 18.1 (Cont)

Ι	A	В	\mathbf{C}	D	У	Mean \bar{y}
1	-1	-1	-1	-1	(97, 97, 97)	97.00
1	1	-1	-1	-1	(31, 31, 32)	31.33
1	-1	1	-1	-1	(97, 97, 97)	97.00
1	1	1	-1	-1	(31, 32, 31)	31.33
1	-1	-1	1	-1	(97, 97, 97)	97.00
1	1	-1	1	-1	(32, 32, 31)	31.67
1	-1	1	1	-1	(97, 97, 97)	97.00
1	1	1	1	-1	(32, 32, 32)	32.00
1	-1	-1	-1	1	(407, 407, 407)	407.00
1	1	-1	-1	1	(135, 136, 135)	135.33
1	-1	1	-1	1	(409, 409, 409)	409.00
1	1	1	-1	1	(135, 135, 136)	135.33
1	-1	-1	1	1	(407, 407, 407)	407.00
1	1	-1	1	1	(139, 140, 139)	139.33
1	-1	1	1	1	(409, 409, 409)	409.00
1	1	1	1	1	(139, 139, 140)	139.33
2695.67	-1344.33	4.33	9.00	1667.00		total
168.48	-84.02	0.27	0.56	104.19		total/16
Washington University in S		nttp://www	v.cse.wusti.edu/	~ja1n/cse56/-1//	©2017 Raj Jai	

18-46

Case Study 18.1 (Cont)

Factor	Effect	% Variation	Conf. Interval			
Ι	168.48		(168.386, 168.573)			
А	-84.02	34.4%	(-84.114, -83.927)			
В	0.27	0.0%	$(\ 0.177,\ 0.364)$			
\mathbf{C}	0.56	0.0%	$(\ 0.469,\ 0.656)$			
D	104.19	52.8%	(104.094, 104.281)			
AB	-0.23	0.0%	(-0.323, -0.136)			
AC	0.56	0.0%	$(\ 0.469,\ 0.656)$			
AD	-51.31	12.8%	(-51.406, -51.219)			
BC	0.02	0.0%	$(\ -0.073, \ 0.114) \dagger$			
BD	0.23	0.0%	$(\ 0.136,\ 0.323)$			
CD	0.44	0.0%	$(\ 0.344,\ 0.531)$			
ABC	0.02	0.0%	(-0.073, 0.114)†			
ABD	-0.27	0.0%	(-0.364, -0.177)			
ACD	0.44	0.0%	$(\ 0.344,\ 0.531)$			
BCD	-0.02	0.0%	(-0.114, 0.073)†			
ABCD	-0.02	0.0%	(-0.114, 0.073)†			
	$\dagger \Rightarrow \text{Not Significant}$					

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Case Study 18.1: Conclusions

- Most of the variation is explained by factors A (Workload), D (Chunk size), and the interaction A D between the two.
- □ The variation due to experimental error is small
 - \Rightarrow Several effects that explain less than 0.05% of variation (listed as 0.0%) are statistically significant.
- Only effects A, D, and AD are both practically significant and statistically significant.

Washington University in St. Louis

- Replications allow estimation of measurement errors
 ⇒ Confidence Intervals of parameters
 > Confidence Intervals of predicted responses
 - \Rightarrow Confidence Intervals of predicted responses
- □ Allocation of variation is proportional to square of effects
- Multiplicative models are appropriate if the factors multiply
- □ Visual tests for independence normal errors

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Homework 18B

Updated Exercise 18.1: For the data of Homework 18A, determine percentage of variation explained, find confidence intervals of the effects, and conduct visual tests.

Scan This to Download These Slides

18-51