

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

- □ 2² Factorial Designs
- Model
- Computation of Effects
- □ Sign Table Method
- □ Allocation of Variation
- General 2^k Factorial Designs

Washington University in St. Louis

2^k Factorial Designs

- □ k factors, each at two levels.
- □ Easy to analyze.
- □ Helps in sorting out impact of factors.
- Good at the beginning of a study.
- Valid only if the effect is unidirectional.
 E.g., memory size, the number of disk drives

Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse567-17/</u>

¹⁷⁻³

2² Factorial Designs

□ Two factors, each at two levels.

Performance in MIPS						
Cache	Memory Size					
Size	4M Bytes	16M Bytes				
1K	15	45				
$2\mathrm{K}$	25	75				

$$x_A = \begin{vmatrix} -1 & \text{if 4M bytes memory} \\ 1 & \text{if 16M bytes memory} \end{vmatrix}$$
$$x_B = \begin{vmatrix} -1 & \text{if 1K bytes cache} \\ 1 & \text{if 2K bytes cache} \end{vmatrix}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Model

 $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$

Observations:

 $15 = q_0 - q_A - q_B + q_{AB}$ $45 = q_0 + q_A - q_B - q_{AB}$ $25 = q_0 - q_A + q_B - q_{AB}$ $75 = q_0 + q_A + q_B + q_{AB}$

Solution:

 $y = 40 + 20x_A + 10x_B + 5x_Ax_B$ **Interpretation**: Mean performance = 40 MIPS Effect of memory = 20 MIPS; Effect of cache = 10 MIPS Interaction between memory and cache = 5 MIPS. Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse567-17/</u> ©2017 Raj Jain

Computation of Effects

Experiment	А	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

 $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$

- $y_{1} = q_{0} q_{A} q_{B} + q_{AB}$ $y_{2} = q_{0} + q_{A} q_{B} q_{AB}$ $y_{3} = q_{0} q_{A} + q_{B} q_{AB}$
 - $y_4 = q_0 + q_A + q_B + q_{AB}$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Computation of Effects (Cont)

Solution:

$$q_{0} = \frac{1}{4}(y_{1} + y_{2} + y_{3} + y_{4})$$

$$q_{A} = \frac{1}{4}(-y_{1} + y_{2} - y_{3} + y_{4})$$

$$q_{B} = \frac{1}{4}(-y_{1} - y_{2} + y_{3} + y_{4})$$

$$q_{AB} = \frac{1}{4}(y_{1} - y_{2} - y_{3} + y_{4})$$

Notice that effects are linear combinations of responses. Sum of the coefficients is zero \Rightarrow contrasts.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Computation of Effects (Cont)

Experiment	А	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

$$q_A = \frac{1}{4}(-y_1 + y_2 - y_3 + y_4)$$
$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

Notice:

$$\label{eq:q_A} \begin{aligned} & \textbf{q}_{A} = \text{Column A } \textbf{\pounds} \text{ Column y} \\ & \textbf{q}_{B} = \text{Column B } \textbf{\pounds} \text{ Column y} \end{aligned}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Sign Table Method

Ι	А	В	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	$\mathrm{Total}/4$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Allocation of Variation

□ Importance of a factor = proportion of the *variation* explained

Sample Variance of $y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i - \bar{y})^2}{2^2 - 1}$ Total Variation of $y = \text{SST} = \sum_{i=1}^{2^2} (y_i - \bar{y})^2$

\Box For a 2² design:

 $SST = 2^{2}q_{A}^{2} + 2^{2}q_{B}^{2} + 2^{2}q_{AB}^{2} = SSA + SSB + SSAB$ $\bigcirc Variation due to A = SSA = 2^{2}q_{A}^{2}$ $\bigcirc Variation due to B = SSB = 2^{2}q_{B}^{2}$ $\bigcirc Variation due to interaction = SSAB = 2^{2}q_{AB}^{2}$ $\bigcirc Variation explained by A = SSA =$

¹⁷⁻¹⁰

Derivation

• Model: $y_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi}$ Notice

i=1

- 1. The sum of entries in each column is zero: $\sum_{i=1}^{4} x_{Ai} = 0; \sum_{i=1}^{4} x_{Bi} = 0; \sum_{i=1}^{4} x_{Ai} x_{Bi} = 0;$
- 2. The sum of the squares of entries in each column is 4:

$$\sum_{i=1}^{4} x_{Ai}^{2} = 4$$
$$\sum_{i=1}^{4} x_{Bi}^{2} = 4$$
$$\sum_{i=1}^{4} (x_{Ai} x_{Bi})^{2} = 4$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Derivation (Cont)

3. The columns are orthogonal (inner product of any two columns is zero):

$$\sum_{i=1}^{4} x_{Ai} x_{Bi} = 0$$

$$\sum_{i=1}^{4} x_{Ai} (x_{Ai} x_{Bi}) = 0$$

$$\sum_{i=1}^{4} x_{Bi} (x_{Ai} x_{Bi}) = 0$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Derivation (Cont)

Sample mean \bar{y} $=\frac{1}{4}\sum^{\bar{}}y_i$ $= \frac{1}{4} \sum_{A} \left(q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} \right)$ $=\frac{1}{4}\sum_{i=1}^{4}q_{0}+\frac{1}{4}q_{A}\sum_{i=1}^{4}x_{Ai}$ $+q_B \frac{1}{4} \sum^4 x_{Bi} + q_{AB} \frac{1}{4} \sum^4 x_{Ai} x_{Bi}$ $= q_0$ http://www.cse.wustl.edu/~jain/cse567-17/ Washington University in St. Louis ©2017 Rai Jain

Derivation (Cont)

□ Variation of y

$$= \sum_{i=1}^{4} (y_i - \bar{y})^2$$

= $\sum_{i=1}^{4} (q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi})^2$
= $\sum_{i=1}^{4} (q_A x_{Ai})^2 + \sum_{i=1}^{4} (q_B x_{Bi})^2$
+ $\sum_{i=1}^{4} (q_{AB} x_{Ai} x_{Bi})^2$ + Product terms
= $q_A^2 \sum_{i=1}^{4} (x_{Ai})^2 + q_B^2 \sum_{i=1}^{4} (x_{Bi})^2$
+ $q_{AB}^2 \sum_{i=1}^{4} (x_{Ai} x_{Bi})^2 + 0$
= $4q_A^2 + 4q_B^2 + 4q_{AB}^2$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 17.2

Memory-cache study:

$$\bar{y} = \frac{1}{4}(15 + 45 + 25 + 75) = 40$$

Total Variation = $\sum_{i=1}^{4} (y_i - \bar{y})^2$
= $(25^2 + 5^2 + 15^2 + 35^2)$
= 2100
= $4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$

Total variation= 2100
 Variation due to Memory = 1600 (76%)
 Variation due to cache = 400 (19%)
 Variation due to interaction = 100 (5%)
 Washington University in St. Louis

Case Study 17.1: Interconnection Nets

- Memory interconnection networks: Omega and Crossbar.
- □ Memory reference patterns: *Random* and *Matrix*
- □ Fixed factors:
 - > Number of processors was fixed at 16.
 - > Queued requests were not buffered but blocked.
 - > Circuit switching instead of packet switching.
 - > Random arbitration instead of round robin.
 - ➤ Infinite interleaving of memory ⇒ no memory bank contention.

2² Design for Interconnection Networks

F	Factors Used in the Interconnection Network Study							
		L	evel					
Symbol Factor		Factor		-1	1			
A Type of the			Type of the net	work	Crossba	r Omega		
B Address Pa			Address Patter	n Used	Random	n Matrix		
				Respo	onse			
	А	В	Throughput T	90% Transit N		Response R		
	-1	-1	0.6041	3		1.655		
1 -1 0.7922		0.7922	2		1.262			
	-1 1 0.4220		0.4220	5		2.378		
	1	1	0.4717	2	4	2.190		
Wasł	nington U1	niversity	in St. Louis <u>http://w</u>	ww.cse.wustl.edu/	~jain/cse567-17/	©2017 Raj Jai		
				17 17				

Interconnection Networks Results

Para-	Mean	n Estin	nate	Variati	on Exp	plained
meter	Т	Ν	R	Т	Ν	R
q_0	0.5725	3.5	1.871			
q_A	0.0595	-0.5	-0.145	17.2%	20%	10.9%
q_B	-0.1257	1.0	0.413	77.0%	80%	87.8%
q_{AB}	-0.0346	0.0	0.051	5.8%	0%	1.3%

• Average throughput = 0.5725

- Most effective factor = B = Reference pattern The address patterns chosen are very different.
- □ Reference pattern explains ± 0.1257 (77%) of variation.
- Effect of network type = 0.0595
 Omega networks = Average + 0.0595
 Crossbar networks = Average 0.0595
- Slight interaction (0.0346) between reference pattern and network type.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

General 2^k Factorial Designs

- □ k factors at two levels each.
 - 2^k experiments.
 - 2^k effects:
 - k main effects $\begin{pmatrix} k \\ 2 \\ k \\ 3 \end{pmatrix}$ two factor interactions $\begin{pmatrix} k \\ 3 \end{pmatrix}$ three factor interactions...

2^k Design Example

□ Three factors in designing a machine:

- Cache size
- > Memory size
- > Number of processors

	Factor	Level -1	Level 1
Α	Memory Size	$4\mathrm{MB}$	16MB
В	Cache Size	1kB	$2\mathrm{kB}$
С	Number of Processors	1	2

 $y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_{AB} x_A x_B + q_{AC} x_A x_C + q_{BC} x_B x_C + q_{ABC} x_A x_B x_C$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

2^k Design Example (cont)

Cac	che		4M [Byte	S	1	6M]	Byt	tes
Size	<u>)</u>	1	Proc	2 F	Proc	1 Pı	roc	2	Proc
1K	Byte		14		46		22		58
2K	Byte		10		50		34		86
Ι	A	В	С	AB	AC	BC	AB	\mathbf{C}	У
1	-1	-1	-1	1	1	1		-1	14
1	1	-1	-1	-1	-1	1		1	22
1	-1	1	-1	-1	1	-1		1	10
1	1	1	-1	1	-1	-1		-1	34
1	-1	-1	1	1	-1	-1		1	46
1	1	-1	1	-1	1	-1		-1	58
1	-1	1	1	-1	-1	1		-1	50
1	1	1	1	1	1	1		1	86
320	80	40	160	40	16	24		8	Total
40	10	5	20	5	2	3		1	Total/8
n University	in St. Loui	s		http://www	w.cse.wust	l.edu/~jain	/cse567-]	17/	

Analysis of 2^k Design

- SST = $2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$ = $8(10^{2} + 5^{2} + 20^{2} + 5^{2} + 2^{2} + 3^{2} + 1^{2})$
 - = 800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512
 - = 18% + 4% + 71% + 4% + 1% + 2% + 0%
 - = 100%

Number of Processors (C) is the most important factor.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

- \square 2^k design allows k factors to be studied at two levels each
- □ Can compute main effects and all multi-factors interactions
- Easy computation using sign table method
- □ Easy allocation of variation using squares of effects

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Exercise 17.1

Analyze the 2³ design:

	A	1	A_2			
	C_1	C_2	C_1	C_2		
B_1	100	15	120	10		
B_2	40	30	20	50		

- > Quantify main effects and all interactions.
- > Quantify percentages of variation explained.
- Sort the variables in the order of decreasing importance.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Homework 17

Modified Exercise 17.1 Analyze the 2³ design:

	A	1	A_2			
	C_1	C_2	C_1	C_2		
B_1	110	15	120	10		
B_2	60	30	40	50		

- > Quantify main effects and all interactions.
- > Quantify percentages of variation explained.
- Sort the variables in the order of decreasing importance.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

¹⁷⁻²⁷