Introduction to Experimental Design

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

- □ What is experimental design?
- □ Terminology
- Common mistakes
- □ Sample designs

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Experimental Design and Analysis

How to:

- Design a proper set of experiments for measurement or simulation.
- Develop a model that best describes the data obtained.
- Estimate the contribution of each alternative to the performance.
- □ Isolate the measurement errors.
- □ Estimate confidence intervals for model parameters.
- □ Check if the alternatives are significantly different.
- □ Check if the model is adequate.

Washington University in St. Louis

Example

Personal workstation design

- 1. Processor: 68000, Z80, or 8086.
- 2. Memory size: 512K, 2M, or 8M bytes
- 3. Number of Disks: One, two, three, or four
- 4. Workload: Secretarial, managerial, or scientific.
- 5. User education: High school, college, or postgraduate level.

```
Five Factors at 3x3x4x3x3 levels
```

Terminology

- **Response Variable**: Outcome.
 - E.g., throughput, response time
- **Factors**: Variables that affect the response variable.
 - E.g., CPU type, memory size, number of disk drives, workload used, and user's educational level.

Also called predictor variables or predictors.

□ Levels: The values that a factor can assume, E.g., the CPU type has three levels: 68000, 8080, or Z80.

of disk drives has four levels.

Also called **treatment**.

- Primary Factors: The factors whose effects need to be quantified.
 - E.g., CPU type, memory size only, and number of disk drives.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Terminology (Cont)

- Secondary Factors: Factors whose impact need not be quantified.
 - E.g., the workloads.
- **Replication**: Repetition of all or some experiments.
- Design: The number of experiments, the factor level and number of replications for each experiment.
 - E.g., Full Factorial Design with 5 replications: $3 \times 3 \times 4 \times 3 \times 3$ or 324 experiments, each repeated five times.
- **Experimental Unit**: Any entity that is used for experiments.
 - E.g., users. Generally, no interest in comparing the units.
- Goal minimize the impact of variation among the units.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Terminology (Cont)

□ Interaction ⇒ Effect of one factor depends upon the level of the other.

 Table 1: Noninteracting Factors

	A_1	A_2
B_1	3	5
B_2	6	8

 Table 2: Interacting Factors

	A_1	A_2
B_1	3	5
B_2	6	9

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Common Mistakes in Experimentation

- □ The variation due to experimental error is ignored.
- □ Important parameters are not controlled.
- □ Effects of different factors are not isolated
- □ Simple one-factor-at-a-time designs are used
- □ Interactions are ignored
- Too many experiments are conducted.
 Better: two phases.

Types of Experimental Designs

□ **Simple Designs**: Vary one factor at a time

of Experiments =
$$1 + \sum_{i=1}^{\kappa} (n_i - 1)$$

- Not statistically efficient.
- > Wrong conclusions if the factors have interaction.

i = 1

- > Not recommended.
- **Full Factorial Design**: All combinations.

of Experiments = $\prod n_i$

- > Can find the effect of all factors.
- > Too much time and money.
- ▹ May try 2^k design first.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Types of Experimental Designs (Cont)

Fractional Factorial Designs: Less than Full Factorial

- > Save time and expense.
- Less information.
- May not get all interactions.
- > Not a problem if negligible interactions

A Sample Fractional Factorial Design

- Workstation Design: (3 CPUs)(3 Memory levels)(3 workloads)(3 ed levels)
 - = 81 experiments

Experiment	CPU	Memory	Workload	Educational
Number		Level	Type	Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Post-graduate
3	68000	$8\mathrm{M}$	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	$8\mathrm{M}$	Managerial	Post-graduate
7	8086	$512 \mathrm{K}$	Secretarial	Post-graduate
8	8086	2M	Managerial	College
9	8086	$8\mathrm{M}$	Scientific	High School
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/ ©2017			©2017 Raj Jain	

- Goal of proper experimental design is to get the maximum information with minimum number of experiments
- □ Factors, levels, full-factorial designs

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Homework 16: Exercise 16.1

The performance of a system being designed depends upon the following three factors:

- > CPU type: 68000, 8086, 80286
- Operating System type: CPM, MS-DOS, Unix
- Disk drive type: A, B, C
- How many experiments are required to analyze the performance if:
 - a. There is significant interaction among factors.
 - b. There is no interaction among factors.
 - c. The interactions are small compared to main effects.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain