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OverviewOverview

 What is a time series?
 Autoregressive Models
 Moving Average Models
 Integrated Models
 ARMA, ARIMA, SARIMA, FARIMA models
 Note: These slides are based on R. Jain, “The Art of Computer 

Systems Performance Analysis,” 2nd Edition (in preparation).
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Stochastic ProcessesStochastic Processes

 Ordered sequence of random observations
 Example:

 Number of virtual machines in a server
 Number of page faults
 Number of queries over time

 Analysis Technique: Time Series Analysis
 Long-range dependence and self-similarity in such 

processes can invalidate many previous results
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Stochastic Processes: Key QuestionsStochastic Processes: Key Questions

1. What is a time series?
2. What are different types of time series models?
3. How to fit a model to a series of measured data?
4. What is a stationary time series?
5. Is it possible to model a series that is not stationary?
6. How to model a series that has a periodic or seasonal 

behavior as is common in video streaming?
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Stochastic Processes : Key Questions (Cont)Stochastic Processes : Key Questions (Cont)

1. What are heavy-tailed distributions and why they are 
important?

2. How to check if a sample of observations has a 
heavy tail?

3. What are self-similar processes?
4. What are short-range and long-range dependent 

processes?
5. Why long-range dependence invalidates many 

conclusions based on previous statistical methods?
6. How to check if a sample has a long-range 

dependence?
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What is a Time SeriesWhat is a Time Series

 Time series = Stochastic Process 
 A sequence of observations over time.
 Examples:

 Price of a stock over successive days
 Sizes of video frames
 Sizes of packets over network
 Sizes of queries to a database system
 Number of active virtual machines in a cloud 

 Goal: Develop models of such series for resource 
allocation and improving user experience.

Time t

xt
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Autoregressive ModelsAutoregressive Models

 Predict the variable as a linear regression of the 
immediate past value:

 Here,       is the best estimate of xt given the past history

 Even though we know the complete past history, we 
assume that xt can be predicted based on just xt-1.

 Auto-Regressive = Regression on Self
 Error:
 Model:
 Best a0 and a1  minimize the sum of square of errors
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Example 37.1Example 37.1
 The number of disk access for 50 database queries were measured to be: 73, 

67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78, 
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71, 
68, 59, 84, 39, 33, 71, 83, 77, 37, 27, 30.

 For this data:
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Example 37.1 (Cont)Example 37.1 (Cont)

 The AR(1) model for the series is:

 The predicted value of  x2 given  x1 is:

 The actual observed value of  is 67. Therefore, the prediction 
error is:

 Sum of squared errors SSE = 32995.57

xt = 33.181 + 0.503xt−1 + et

x̂2 = a0 + a1x1 = 33.181 + 0.503× 73 = 69.880

e2 = x2 − x̂2 = 67− 69.880 = −2.880
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Exercise 37.1

 Fit an AR(1) model to the following sample of 50 
observations: 83, 86, 46, 34, 130, 109, 100, 81, 84, 
148, 93, 76, 69, 40, 50, 56, 63, 104, 35, 55, 124, 52, 
55, 81, 33, 76, 83, 90, 94, 37, -2, 33, 105, 133, 78, 50, 
115, 149, 98, 110, 25, 82, 59, 80, 43, 58, 88, 78, 55, 
68. Find a0,  a1 and the minimum SSE.
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Stationary ProcessStationary Process
 Each realization of a random process will be different:

 x is function of the realization i (space) and time t: x(i, t)
 We can study the distribution of xt in space.
 Each xt has a distribution, e.g., Normal
 If this same distribution (normal) with the same parameters μ, 

σ applies to xt+1, xt+2, …, we say xt is stationary.

xt

t
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Stationary Process (Cont)Stationary Process (Cont)

 Stationary = Standing in time 
 Distribution does not change with time.

 Similarly, the joint distribution of xt and xt-k depends only on k
not on t.

 The joint distribution of xt, xt-1, …, xt-k depends only on k not 
on t.
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AutocorrelationAutocorrelation
 Covariance of xt and xt-k = Auto-covariance at lag k

 For a stationary series: 
 Statistical characteristics do not depend upon time t.
 Autocovariance depends only on lag k and not on time t

 Autocorrelation is dimensionless and is easier to interpret than
autocovariance.
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Example 37.2Example 37.2
 For the data of Example 37.1, the variance and covariance's at 

lag 1 and 2 are computed as follows:
  50

=1

1 3386Sample Mean = = = 67.72
50 50t

t
x x

250
2 2

=1

1 273002 50 67.72( ) = [( ) ] = ( ) = = 891.879
49 49t t t

t
Var x E x x x  
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Example 37.2 (Cont)Example 37.2 (Cont)

 Small Sample  and       are slightly different. 
Not so for large samples.
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Example 37.2 (Cont)Example 37.2 (Cont)

 Note: Only 48 pairs of {xt, xt-1}  Divisor is 48

 
2 2
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2 2
=3

50 50 50

2 2
=3 =3 =3

( , ) = [( )( )]
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Example 37.2 (Cont)Example 37.2 (Cont)
 

0
( ) 891.8790 = = = = 1
( ) 891.879

t

t

Var xAutocorrelation at lag r
Var x

1
1
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t t
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White NoiseWhite Noise
 Errors et are normal independent and identically distributed 

(IID) with zero mean and variance σ2

 Such IID sequences are called “white noise” sequences.
 Properties:

k0
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White Noise (Cont)White Noise (Cont)
 The autocorrelation function of a white noise sequence is a 

spike (δ function) at k=0.
 The Laplace transform of a δ function is a constant. So in 

frequency domain white noise has a flat frequency spectrum.

 It was incorrectly assumed that white light has no color and, 
therefore, has a flat frequency spectrum and so random noise 
with flat frequency spectrum was called white noise.

t0 f0

Ref: http://en.wikipedia.org/wiki/Colors_of_noise
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White Noise AutocorrelationsWhite Noise Autocorrelations
 It can be shown that autocorrelations for white noise are 

normally distributed with mean:

and variance:

 Therefore, their 95% confidence interval is

This is generally approximated as

 This confidence interval can be used to check if a particular  
autocorrelation is zero.
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Example 37.3

 For the data of Example 37.1: n=50
CI = ∓2/

p
(50) = ∓0.283

r2 is not significantly different from zero.
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Exercise 37.2

 Determine autocorrelations at lag 0 through 2 for the 
data of Exercise 37.1 and determine which of these 
autocorrelations are significant at 95% confidence.
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Assumptions for AR(1) ModelsAssumptions for AR(1) Models

 xt is a Stationary process 
 Linear relationship between successive values
 Normal Independent identically distributed errors:

 Normal errors
 Independent errors

 Additive errors
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Visual Tests for AR(1) ModelsVisual Tests for AR(1) Models
1. Plot xt as a function of t and look for trends
2. xt vs. xt-1 for linearity
3. Errors et vs. predicted values       for additivity
4. Q-Q Plot of errors for Normality
5. Errors et vs. t for iid
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Visual Tests (Cont)Visual Tests (Cont)
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Visual Tests (Cont)Visual Tests (Cont)
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Exercise 37.3

 Conduct visual tests to verify whether or not the 
AR(1) model fitted in Exercise 37.1 is appropriate .
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AR(pAR(p) Model) Model

 xt is a function of the last p values:

 AR(2):

 AR(3):
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 Similarly,
 Or

 Using this notation, AR(p) model is:

 Here, φp is a polynomial of degree p.

Backward Shift OperatorBackward Shift Operator
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AR(pAR(p) Parameter Estimation) Parameter Estimation

 The coefficients ai's can be estimated by minimizing SSE using 
Multiple Linear Regression.

 Optimal a0, a1, and a2  Minimize SSE 
Set the first differential to zero:



37-31
©2015 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-15/Washington University in St. Louis

AR(pAR(p) Parameter Estimation (Cont)) Parameter Estimation (Cont)

 The equations can be written as:

Note: All sums are for t=3 to n. n-2 terms.
 Multiplying by the inverse of the first matrix, we get:
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 All sums are from t=p to t=n and have n-p terms.
 For larger data sets: rk is the autocorrelation at lag k
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Example 37.5Example 37.5
 Consider the data of Example 37.1 and fit an AR(2) model:

 SSE= 31979.32 
 Small sample  Values of a0, a1, and a2 are approximate. 
 Exact model by regression:

1 1 1

2 1 2

1

1

1
1

1 0.486 0.486
0.486 1 0.099

0.575
0.182

a r r
a r r





     
     

     

   
    
   
 

   

0 1 2(1 ) (1 0.575 0.182)67.72 41.164a a a x      

1 239.979 0.587 0.180t t t tx xx e     SSE=31969.99
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Exercise 37.4

 Fit an AR(2) model to the data of Exercise 37.1. 
Determine parameters a0, a1,  a2 and the SSE using 
multiple regression. Repeat the determination of 
parameters using autocorrelation function values.
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Exercise 37.5

 Fit an AR(3) model to the data of Exercise 37.1. 
Determine parameters a0, a1,  a2, a3 and the SSE using 
multiple regression. 
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Determining the Order Determining the Order AR(pAR(p))
 ACF of AR(1) is an exponentially decreasing fn of k
 Fit AR(p) models of order p=0, 1, 2, …
 Compute the confidence intervals of ap.
 After some p, the last coefficients ap will not be significant for 

all higher order models.
 This highest p is the order of the AR(p) model for the series.
 This sequence of last coefficients is also called "Partial 

Autocorrelation Function (PACF)"

Lag k

PACF(k)

0

p=8

rk

k
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Example 37.6
 For the data of Example 37.1, we have:
 AR(1):
 AR(2):
 Similarly, AR(3):
 PACF at lags 1, 2, and 3 are: 0.503, -0.180, and 0.052

 
133.181 0.503t t tx x e  

1 239.979 0.587 0.180t t t tx x x e    

1 2 337.313 0.598 0.211 0.052t t t t tx x x x e      

AR(1) is appropriate.
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Computing PACF

1 1 1
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Computing PACF (Cont)
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Exercise 37.6

 Using the results of Exercises 37.1, 37.4, and 37.5, 
determine the partial autocorrelation function at lags 
1, 2, 3 for the data of Exercise 37.1. Determine which 
values are significant. Based on this which AR(p) 
model will be appropriate for this data?
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Moving Average (MA) ModelsMoving Average (MA) Models

 Moving Average of order 1: MA(1)

b0 is the mean of the time series.
 The parameters b0 and b1 cannot be estimated using standard 

regression formulas since we do not know errors. The errors 
depend on the parameters.

 So the only way to find optimal b0 and b1 is by iteration. 
 Start with some suitable values and change b0 and b1 until 
SSE is minimized and average of errors is zero.

t
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Example 37.4Example 37.4
 Consider the data of Example 37.1.

 For this data:

 We start with b0 = 67.72, b1=0.4, 
Assuming e0=0, compute all the errors and SSE.

and SSE = 33542.8

 We then adjust a0 and b1 until SSE is minimized and mean 
error is close to zero. 
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Example 37.4 (Cont)Example 37.4 (Cont)
 The steps are: Starting with              and trying various values 

of b1. SSE is minimum at b1=0.475. SSE= 33221.06
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Example 37.4 (Cont)Example 37.4 (Cont)

 Keeping b1=0.475, try neighboring values of b0 to get 
average error as close to zero as possible.

 b0= 67.475 gives    =-0.001 SSE=33221.93

50

=1

1= = 0.1661
50 t

t
e e 

ē
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MA(MA(qq) Models) Models

 Moving Average of order 1: MA(1)

 Moving Average of order 2: MA(2)

 Moving Average of order q: MA(q)

 Moving Average of order 0: MA(0) (Note: This is also AR(0))

xt-b0 is a white noise. b0 is the mean of the time series.

t
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Exercise 37.7

 Fit an MA(0) model to the data of Exercise 37.1. 
Determine parameter  b0 and SSE 
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MA(qMA(q) Models (Cont)) Models (Cont)

 Using the backward shift operator B, MA(q):

 Here, Ψq is a polynomial of order q.
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Example 37.8
 Fit MA(2) model to the data of Example 37.1

 Round 1: Setting                             , we try 9 combinations of 
b1={0.2,0.3,0.4} and b2={0.2, 0.3, 0.4}.
Minimum SSE is 33490.26 at b1=0.4 and b2=0.2

 Round 2: Try 4 new points around the current minimum
b0={0.35, 0.45} and b2={0.15, 0.25}
Minimum SSE is 32551.62 at b1=0.45, b2=0.15

 Round 3: Try 4 new points around the current minimum.
Try b1={0.425, 0.475} and b2={0.125, 0.175}
Minimum SSE is 32342.61 at b1=0.475, b2=0.125

0 1 1 2 2t t t tx b e b e b e    

b0 = x̄t = 67.72
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Example 37.8 (Cont)
 Round 4: Try 4 new points around the current minimum.

Try b1={0.4625, 0.4875} and b2={0.125, 0.175}
Minimum SSE is 32201.58 at b1=0.4875, b2=0.125

 Round 5: Try 4 new points around the current minimum.
Try b1={0.481, 0.493} and b2={0.112, 0.137}
Minimum SSE is 32148.21 at b1=0.493, b2=0.137

 Since the decrease in SSN is small (close to 0.1%), we 
arbitrarily stop here. 

 The model is:

  1 267.72 0.493 0.137t t t tx e e e    
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Exercise 38.8

 Fit an MA(1) model to the data of Exercise 37.1. 
Determine parameters b0, b1 and the minimum SSE. 
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Autocorrelations for MA(1)Autocorrelations for MA(1)
 For this series, the mean is:

 The variance is:

 The autocovariance at lag 1 is:
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Autocorrelations for MA(1) (Cont)Autocorrelations for MA(1) (Cont)
 The autocovariance at lag 2 is:

 For MA(1), the autocovariance at all higher lags (k>1) is 0.
 The autocorrelation is:

 The autocorrelation of MA(q) series is non-zero only 
for lags k< q and is zero for all higher lags.
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Example 37.9

 For the data of Example 37.1:
 Autocorrelation is zero for all lags k >1.
 MA(1) model is appropriate for this data.



37-54
©2015 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-15/Washington University in St. Louis

Example 37.10Example 37.10

 The order of the last significant rk determines the 
order of the MA(q) model.

 For the following data, all autocorrelations at lag 9 
and higher are zero  MA(8) model would be 
appropriate

Lag k

Autocorrelation rk

0

q=8
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Exercise 37.9

 Fit an MA(2) model to the data of Exercise 37.2. 
Determine parameters b0, b1, b2 and the minimum 
SSE. For this data, which model would you choose 
MA(0), MA(1) or MA(2) and why? 
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Duality of AR(p) vs. MA(q)

 Determining the coefficients of AR(p) is straight 
forward but determining the order p requires an 
iterative procedure

 Determining the order q of MA(q) is straight forward 
but determining the coefficients requires an iterative 
procedure



37-57
©2015 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-15/Washington University in St. Louis

NonNon--Stationarity: Integrated ModelsStationarity: Integrated Models

 In the white noise model AR(0):
 The mean a0 is independent of time.
 If it appears that the time series in increasing approximately 

linearly with time, the first difference of the series can be 
modeled as white noise:

 Or using the B operator: (1-B)xt = xt-xt-1

 This is called an "integrated" model of order 1 or I(1). Since the 
errors are integrated to obtain x.

 Note that xt is not stationary but (1-B)xt is stationary.

t

xt

t

(1-B)xt
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Integrated Models (Cont)Integrated Models (Cont)
 If the time series is parabolic, the second difference can be 

modeled as white noise:

 Or
This is an I(2) model. Also written as:

Where Operator D = 1-B

t

xt

2
0=t tD x b e



37-59
©2015 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-15/Washington University in St. Louis

ARMA and ARIMA ModelsARMA and ARIMA Models

 It is possible to combine AR, MA, and I models
 ARMA(p, q) Model:

 ARIMA(p,d,q) Model:

 Using algebraic manipulations, it is possible to transform AR 
models to MA models and vice versa.
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Example 37.11
 Consider the MA(1) model:
 It can be written as:

0 1 1t t tx b e b e   

0 1( ) (1 )t tx b b B e  

1
1 0(1 ) ( )t tb B x b e  

  2 2 3 3
1 1 1 01 ... ( )t tb B b B b B x b e     

  2 3 0
1 1 1 2 1 3

11t t t t t
bx b x b x b x e

b       




  2 30
1 1 1 2 1 3

11t t t t t
bx b x b x b x e

b        




 If b1<1, the coefficients decrease and soon become 
insignificant. This results in a finite order AR model.
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Exercise 39.10

 Convert the following AR(1) model to an equivalent 
MA model: 

0 1 1t t tx a a x e  
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NonNon--Stationarity due to SeasonalityStationarity due to Seasonality
 The mean temperature in December is always lower than that 

in November and in May it always higher than that in March 
Temperature has a yearly season.

 One possible model could be I(12):

 or
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Seasonal ARIMA (SARIMA) ModelsSeasonal ARIMA (SARIMA) Models

 SARIMA                           Model:

 Fractional ARIMA (FARIMA) Models 
ARIMA(p, d+δ, q)  -0.5<δ<0.5
Fractional Integration allowed.
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Exercise 37.11

 Write the expression for SARIMA(1,0,1)(0,1,0)12

model in terms of x’s and e’s.
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 Observation: Every 16th frame is a large (I) frame.

Case Study 37.1: Mobile VideoCase Study 37.1: Mobile Video
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 A closer look at the ACF graph shows a strong continual 
correlation every  16 lag   GOP size

Traffic Modeling Traffic Modeling –– All FramesAll Frames

Result: SARIMA (1, 0, 1)x(1,1,1)s Model, s=group size =16
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Validation
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SummarySummary

 AR(1) Model:

 MA(1) Model:

 ARIMA(1,1,1) Model:

 Seasonal ARIMA (1,0,1)x(0,1,0)12 model:


