

Queueing Networks

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

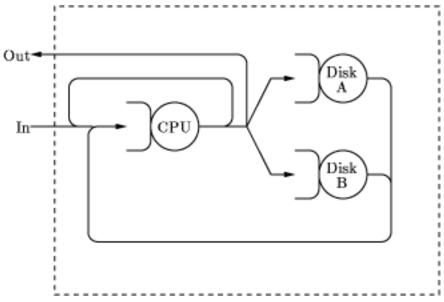
Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse567-15/

- 1. Open and Closed Queueing Networks
- 2. Product Form Networks
- 3. Queueing Network Models of Computer Systems

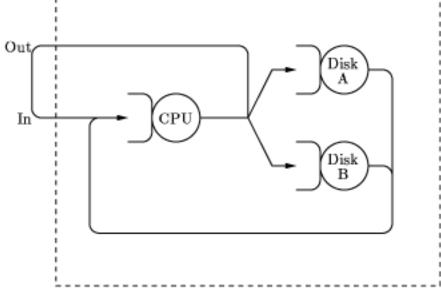
Open Queueing Networks

- □ Queueing Network: model in which jobs departing from one queue arrive at another queue (or possibly the same queue)
- □ Open queueing network: external arrivals and departures
 - > Number of jobs in the system varies with time.
 - > Throughput = arrival rate
 - Goal: To characterize the distribution of number of jobs in the system.



Closed Queueing Networks

- Closed queueing network: No external arrivals or departures
 - > Total number of jobs in the system is constant
 - > 'OUT' is connected back to 'IN.'
 - > Throughput = flow of jobs in the OUT-to-IN link
 - > Number of jobs is given, determine the throughput

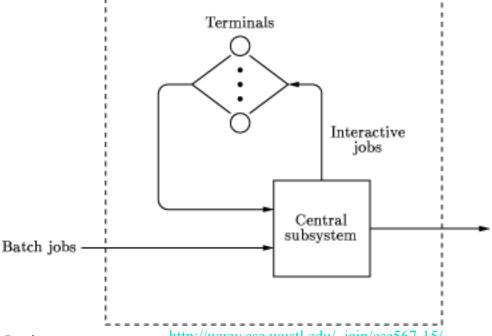


32-4

Washington University in St. Louis

Mixed Queueing Networks

Mixed queueing networks: Open for some workloads and closed for others \Rightarrow Two classes of jobs. Class = types of jobs. All jobs of a single class have the same service demands and transition probabilities. Within each class, the jobs are indistinguishable.



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-15/

Series Networks



- ightharpoonup k M/M/1 queues in series
- Each individual queue can be analyzed independently of other queues
- □ Arrival rate = λ . If μ_i is the service rate for i^{th} server:

Utilization of i^{th} server $\rho_i = \lambda/\mu_i$

Probability of n_i jobs in the i^{th} queue $= (1 - \rho_i)\rho_i^{n_i}$

Series Networks (Cont)

Joint probability of queue lengths:

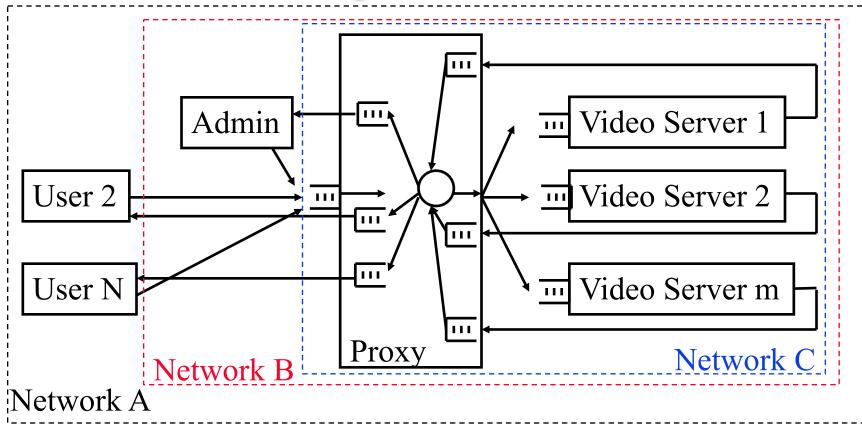
$$P(n_1, n_2, n_3, \dots, n_M)$$

$$= (1 - \rho_1)\rho_1^{n_1}(1 - \rho_2)\rho_2^{n_2}(1 - \rho_3)\rho_3^{n_3} \cdots (1 - \rho_M)\rho_M^{n_M}$$

$$= p_1(n_1)p_2(n_2)p_3(n_3) \cdots p_M(n_M)$$

⇒ product form network

Quiz 32A



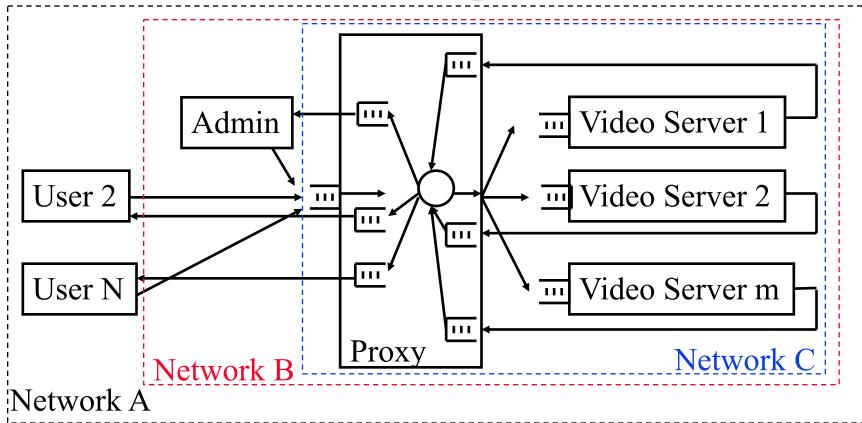
Identify open/closed/mixed networks:

- A. Network A is
- B. Network B is
- C. Network C is

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-15/

Solution to Quiz 32A



Identify open/closed/mixed networks:

- A. Network A is <u>Closed.</u>
- B. Network B is Mixed.
- C. Network C is <u>Open.</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-15/

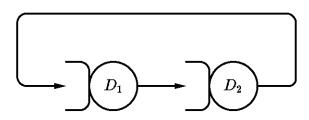
Product-Form Network

■ Any queueing network in which:

$$P(n_1, n_2, \dots, n_M) = \frac{1}{G(N)} \prod_{i=1}^{M} f_i(n_i)$$

When $f_i(n_i)$ is some function of the number of jobs at the ith facility, G(N) is a normalizing constant and is a function of the total number of jobs in the system.

Example 32.1

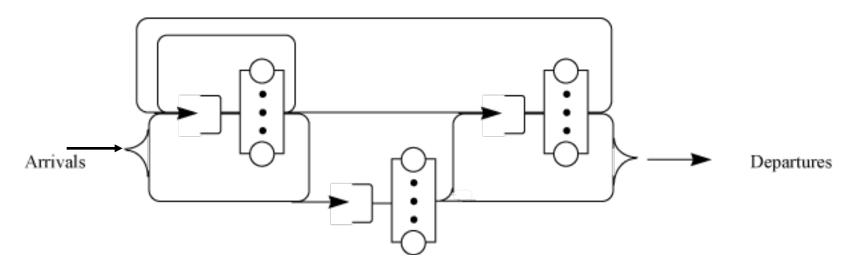


- □ Consider a closed system with two queues and N jobs circulating among the queues:
- Both servers have an exponentially distributed service time. The mean service times are 2 and 3, respectively. The probability of having n_1 jobs in the first queue and $n_2=N-n_1$ jobs in the second queue can be shown to be:

$$P(n_1, n_2) = \frac{1}{3^{N+1} - 2^{N+1}} \left(2^{n_1} \times 3^{n_2} \right)$$

- In this case, the normalizing constant G(N) is $3^{N+1}-2^{N+1}$.
- □ The state probabilities are products of functions of the number of jobs in the queues. Thus, this is a *product form network*.

General Open Network of Queues



- Product form networks are easier to analyze
- □ Jackson (1963) showed that any arbitrary open network of m-server queues with exponentially distributed service times has a product form

General Open Network of Queues (Cont)

☐ If all queues are single-server queues, the queue length distribution is:

$$P(n_1, n_2, n_3, \dots, n_M)$$

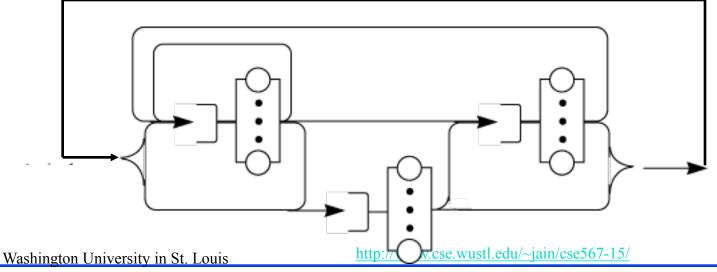
$$= (1 - \rho_1)\rho_1^{n_1}(1 - \rho_2)\rho_2^{n_2}(1 - \rho_3)\rho_3^{n_3} \cdots (1 - \rho_M)\rho_M^{n_M}$$

$$= p_1(n_1)p_2(n_2)p_3(n_3)\cdots p_M(n_M)$$

Closed Product-Form Networks

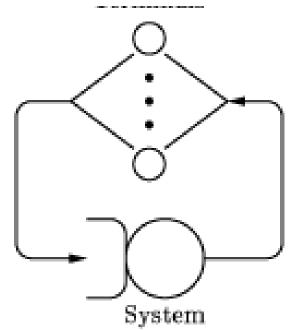
- □ Gordon and Newell (1967) showed that any arbitrary closed networks of m-server queues with exponentially distributed service times also have a product form solution.
- Baskett, Chandy, Muntz, and Palacios (1975) and then Denning and Buzen (1978) showed that product form solutions exist for an even broader class of networks.

Note: Internal flows are not Poisson.



Machine Repairman Model

- Originally for machine repair shops
- A number of working machines with a repair facility with one or more servers (repairmen).
- Whenever a machine breaks down, it is put in the queue for repair and serviced as soon as a repairman is available

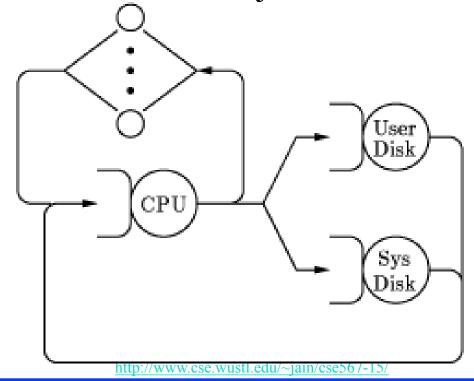


- \square Scherr (1967) used this model to represent a timesharing system with n terminals.
- □ Users sitting at the terminals generate requests (jobs) that are serviced by the system which serves as a repairman.
- After a job is done, it waits at the user-terminal for a random ``think-time" interval before cycling again.

http://www.cse.wustl.edu/~jain/cse567-15

Central Server Model

- □ Introduced by Buzen (1973)
- □ The CPU is the ``central server" that schedules visits to other devices
- □ After service at the I/O devices the jobs return to the CPU



Washington University in St. Louis

Types of Service Centers

Three kinds of devices

- 1. Fixed-capacity service centers: Service time does not depend upon the number of jobs in the device
- For example, the CPU in a system may be modeled as a fixed-capacity service center.
- 2. Delay centers or infinite server: No queueing. Jobs spend the same amount of time in the device regardless of the number of jobs in it. A group of dedicated terminals is usually modeled as a delay center.
- 3. Load-dependent service centers: Service rates may depend upon the load or the number of jobs in the device., e.g., M/M/m queue (with $m \ge 2$)
- A group of parallel links between two nodes in a computer network is another example

Quiz 32B

□ The probability function for jobs in a system with m queues is:

$$P(n_1, n_2, n_m) = \frac{g(n_1)g(n_2)g(n_{m-1})}{g(n_m)}$$

Is this a product form network? _____

- ☐ Identify the type of server:
 - A. Multi-core CPU:
 - B. Single-core CPU (No dynamic frequency scaling):
 - c. Single-core CPU (with dynamic frequency scaling):
 - D. Hard disk drives:
 - E. Solid state drives:
 - F. Multiple users each handling one window:_____
 - G. A user handling multiple windows:_____

Solution to Quiz 32B

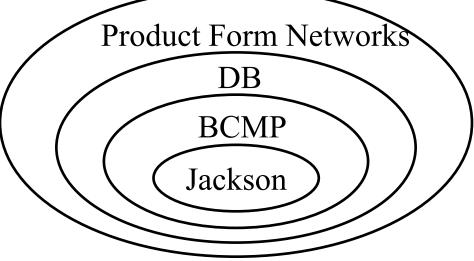
□ The probability function for jobs in a system with m queues is:

$$P(n_1, n_2, n_m) = \frac{g(n_1)g(n_2)g(n_{m-1})}{g(n_m)}$$

Is this a product form network? YES

- ☐ Identify the type of server:
 - A. Multi-core CPU: Load dependent
 - B. Single-core CPU (No dynamic frequency scaling): Fixed Capacity
 - c. Single-core CPU (with dynamic frequency scaling): <u>Load Dependent</u>
 - D. Hard disk drives: Load dependent
 - E. Solid state drives: <u>Fixed capacity</u>
 - F. Multiple users each handling one window: <u>Delay Center</u>
 - G. A user handling multiple windows: Fixed capacity

Summary



- Open, Closed, and Mixed queueing networks
- □ Product form networks: Any network in which the system state probability is a product of device state probabilities
- □ Jackson: Network of M/M/m queues. BCMP: More general conditions Denning and Buzen: Even more general conditions
- Service centers: Fixed capacity, delay centers, load dependent

Homework 32

- ☐ In a series network of three routers, the packets arrive at the rate of 100 packets/second. The service rate of the three routers is 250 packets/s, 150 packets/s, and 200 packets/s.
- □ Write an expression for the state probability of the system.
- □ Calculate the probability of having 2 packets at each of the three routers.

