Introduction to Heavy-Tailed Distributions, Self-Similar Processes, and Long-Range Dependence

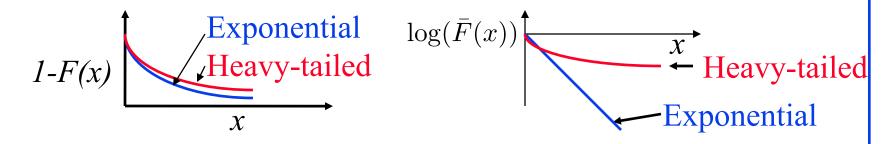
Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-13/

- 1. Heavy-Tailed Distributions (HTDs)
- 2. How to Check for Heavy Tail?
- 3. Self-Similar Processes
- 4. Long Range Dependence (LRD)
- 5. Generating LRD Sequences
- 6. Self-Similarity vs. LRD
- 7. Hurst Exponent Estimation

Heavy-Tailed Distributions (HTDs)



CCDF decays slower than the exponential distribution

$$P(X > x) = 1 - F(x) = \bar{F}(x) = e^{-\lambda x}$$

- □ CCDF = Complementary cumulative distribution function $\bar{F}(x) = 1 F(x)$
- For heavy tailed distributions, CCDF is slower by some power of x $\bar{F}(x) \rightarrow cx^n e^{-\lambda x}$
- Very large values possible

Examples of HTD Variables

- Many real-world phenomenon have been found to follow heavy tailed distributions.
 - Distribution of wealth.
 One percent of the population owns 40% of wealth.
 - > File sizes in computer systems
 - > Connection durations
 - > CPU times of jobs
 - Web pages sizes
- □ Significant impact on buffer sizing in switches and routers.

■ Weibull distribution

$$F(x) = 1 - e^{-\lambda x^{\alpha}}$$

$$1 - F(x) = e^{-\lambda x^{\alpha}} > e^{-\lambda x} \qquad \lambda > 0, 1 > \alpha > 0$$

□ Other examples of heavy tailed distributions are Cauchy, log-normal, and t-distributions.

Power Tailed Distributions

A subset of heavy tailed distributions

$$\bar{F}(x) \Rightarrow \frac{c}{x^{\alpha}}$$

- CCDF approaches a power function for large x
 - > For such distributions: all moments $E[x^l]$ for all values of $l \ge \alpha$ are infinite.
 - > If $\alpha \le 2$, x has infinite variance
 - > If α < 1, the variable has infinite mean
 - $\rightarrow \alpha$ is called the **tail index**.

Pareto distribution:

$$F(x) = 1 - x^{-\alpha} \qquad 1 \le x \le \infty, \alpha > 0$$

$$\bar{F}(x) = 1 - F(X) = \frac{1}{x^{\alpha}}$$

$$F(x)$$

pdf:

$$f(x) = \frac{d}{dx}F(x) = \alpha x^{-\alpha - 1}$$

 $\begin{array}{c} \alpha=2\\ \alpha=1 \end{array}$

□ It's *l*th moment is:

For
$$l \neq \alpha$$
: $E[x^l] = \int_1^\infty x^l f(x) dx = \int_1^\infty \alpha x^{l-\alpha-1} dx = \frac{\alpha}{l-\alpha} x^{l-\alpha} \Big|_1^\infty = \begin{cases} \infty & l > \alpha \\ \frac{\alpha}{\alpha-l} & l < \alpha \end{cases}$
For $l = \alpha$: $E[x^l] = \int_1^\infty \alpha x^{-1} dx = \alpha \ln x \Big|_1^\infty = \infty$

- \square All moments for $l \ge \alpha$ are infinite.
- □ For $2 \ge \alpha > 1$ variance and higher moments are infinite. For $1 \ge \alpha$ variance does not exist.
- For University in Queyen meaniswinfiniteedu/~jain/cse567-13/k_38lrd.htm

©2013 Raj Jain

Effect of Heavy Tail

- □ A random variable with HTD can have very large values with finite probabilities resulting in many outliers.
- Sampling from such distributions results in mostly small values with a few very large valued samples.
- Sample statistics (e.g., sample mean) may have a large variance ⇒ sample sizes required for a meaningful confidence are large.
- Sample mean generally under-estimates the population mean.
- □ Simulations with heavy-tailed input require very long time to reach steady state and even then the variance can be large.

$$|\bar{x}_n - \mu| \approx cn^{\frac{1}{\alpha}-1}$$

c is some constant.

Effect of Heavy Tail (Cont)

□ The number of observations required to reach k-digit accuracy:

$$\frac{|\bar{x}_n - \mu|}{\mu} \le 10^{-k} \qquad \frac{cn^{\frac{1}{\alpha} - 1}}{\mu} \le 10^{-k} \qquad n \ge 10^{\frac{\log(c/\mu) + k}{1 - \frac{1}{\alpha}}}$$

- Assuming c=1, μ =1, 10¹¹ observations are required for a single decimal digit accuracy (k=l) if α =1.1.
- □ Central limit theorem applies <u>only</u> to observations from distributions with finite variances.
 - > For heavy-tailed distributions with infinite variance, the central limit theorem does <u>not</u> apply.
 - > The sample mean does not have a normal distribution even after a large number of samples.
 - > Confidence interval formulas mentioned earlier can not be

Washington USEC washington University in St. Louis

Effect of Heavy Tail (Cont)

- □ M/PT/1 queue: Poisson arrivals and power-tailed service time
 - > pdf of queue length $f(n) \to c(\rho)/n^{\alpha}$ where $c(\rho)$ is a function of the traffic intensity ρ .
 - > If $\alpha \le 1$, the mean service time is infinite and so are the traffic intensity and the mean queue length.
 - > If $\alpha \le 2$, the service time has infinite variance, and so does the queue length.

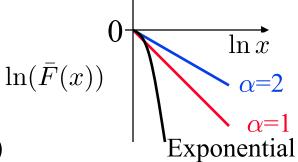
□ PT/M/1 queue:

- > Tail index $\alpha \leq 1$, the mean inter-arrival time is infinite.
- > For $1 < \alpha \le 2$, the variance of the inter-arrival time is infinite.
- Heavy tailed-ness also implies **predictability**:
 - > If a heavy tailed task has run a long time, it is expected to run for an additional long time.

$$\lim_{x \to \infty} E[X - x | X > x] = \infty$$

How to Check for Heavy Tail?

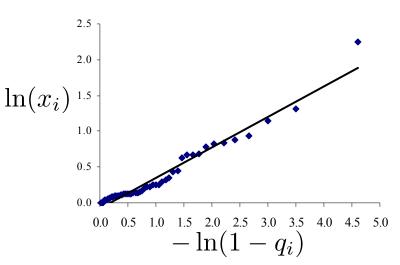
- Make a Q-Q plot on a log-log graph assuming a Pareto distribution
- $x = (1-F)^{-1/\alpha}$
- On a log-log graph: $\ln x = (-1/\alpha) \ln (1-F)$
- □ Find α from the slope of the best-fit line. $\alpha \ge 1 \Rightarrow$ Heavy Tailed



□ Check if this set of 50 observations has a heavy tail: 2.426, 1.953, 1.418, 1.080, 3.735, 2.307, 1.876, 1.110, 3.131, 1.134, 1.171, 1.141, 2.181, 1.007, 1.076, 1.131, 1.156, 2.264, 2.535, 1.001, 1.099, 1.149, 1.225, 1.099, 1.279, 1.052, 1.051, 9.421, 1.346, 1.532, 1.000, 1.106, 1.126, 1.293, 1.130, 1.043, 1.254, 1.118, 1.027, 1.383, 1.288, 1.988, 1.561, 1.106, 1.256, 1.187, 1.084, 1.968, 1.045, 1.155

$$\alpha = 1/\text{slope} = 1/0.427 = 2.34$$

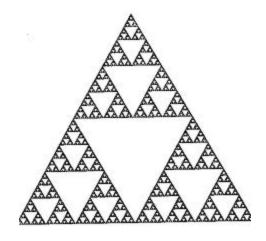
xi Rank	RiQi=(Ri				
2.426	46	0.910	0.886	2.408	
1.953	40	0.790	0.669	1.561	
1.418	36	0.710	0.349	1.238	
1.080	10	0.190	0.077	0.211	
1.084	11	0.210	0.081	0.236	
1.968	41	0.810	0.677	1.661	
1.045	6	0.110	0.044	0.117	
1.155	24	0.470	0.144	0.635	
80.204		•	17.308	49.654	Sum
207.810		•	14.781	95.774S	Sum of Sq
1.604			0.346	0.993	Average



http://www.cse.wustl.edu/~jain/cse567-13/k_38lrd.htm

©2013 Raj Jain

Self-Similarity



- When zoomed, the sub objects have the same shape as the original object
- Also called Fractals
- □ Latin "fractus" = "fractional" or "broken" ⇒Traditional Euclidean geometry can not be used to analyze these objects because their perimeter is infinite.

Self-Similar Processes

□ Scaling in time = scaling in magnitude

$$x_{at} \sim a^H x_t \qquad \forall a > 0$$

Statistical similarity \Rightarrow Similar distributions with similar mean and variance $E[x_{at}] = a^H E[x_t]$

$$Var[x_{at}] = a^{2H} Var[x_t]$$

- \rightarrow Similar variance \Rightarrow Self-similar in the second order
- ➤ Similar higher order moments ⇒ Self-similarity of higher orders
- \gt All moments similar \Rightarrow strictly self-similar.

- Consider the white noise process e_t with zero mean and unit variance: $e_t = z \sim N(0, 1)$ Here z is the unit normal variate.
- lacksquare Consider the process x_t : $x_t = t^H e_t = t^H z$
- For this process:

$$x_{at} = (at)^H z = a^H t^H z = a^H x_t$$

- \triangleright Therefore, x_t is a self-similar process.
- \rightarrow H = Hurst exponent

Short Range Dependence (SRD)

- □ Sum of Autocorrelation function is finite.
- \square Example: AR(1) with zero mean:

$$x_t = a_1 x_{t-1} + e_t$$

■ For this process, the autocorrelation function decreases exponentially:

$$Cor[x_t, x_{t-k}] = r_k = a_1^{|k|}$$

 $lue{}$ Sum of autocorrelations is finite (provided $|a_1| < 1$):

$$\sum_{k=0}^{\infty} r_k = \frac{1}{1 - a_1}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k 38lrd.htm

Long Range Dependence (LRD)

- □ Sum of Autocorrelation function is infinite $\sum r_k = \infty$ Alternative Definition:
- Limiting tail behavior of the autocorrelation:

$$r(k) \to k^{2H-2}L(k) \qquad k \to \infty$$

Here, L(x) is a *slowly varying function* of x.

L(ax)/L(x) tends to 1 as x approaches infinity.

Constants and logarithms are examples of slowly varying functions.

Examples of Processes with LRD

- Aggregation of a large number on-off processes with heavy-tailed on-times or heavy-tailed off times results in long-range dependence.
- □ File sizes have a long-tailed distribution
 ⇒ Internet traffic has a long range dependence.
- □ Connection durations have also been found to have a heavy-tailed distribution ⇒ traffic has a long range dependence
- UNIX processes have been found to have a heavy-tailed distribution ⇒ resource demands have LRD
- □ Congestion and feedback control mechanisms such as those used in Transmission Control Protocol (TCP) increase the range of dependence in the traffic.

Effect of Long Range Dependence

■ Long-range dependence invalidates all results for queueing theory obtained using Poisson processes, e.g., Buffer sizes required to avoid overflow may be off by thousands times.

Self-Similarity vs. LRD

- □ Self-similarity ≠ Long-range dependence
- Self-similar process can be short-range dependent or longrange dependent
- □ Self-similar processes with $\frac{1}{2}$ < H < 1 have long range dependence.
- □ Self-similar processes with $0 < H \le \frac{1}{2}$ have short range dependence.
- \square ARIMA(p, d, q) with integer valued d are SRD.
- □ FARIMA(p, d+ δ , q) with $\frac{1}{2}$ < δ < $\frac{1}{2}$ and $\delta \neq 0$ have long-range dependence.

FARIMA Models and LRD

- Fractional Auto-regressive Integrated Moving Average (FARIMA) processes exhibit LRD for certain values of d.
- Consider FARIMA(0, 0.25, 0): $(1 B)^{0.25}x_t = e_t$

$$x_{t} = (1-B)^{-0.25}e_{t}$$

$$= e_{t} - (-0.25)e_{t-1} + \frac{-0.25(-0.25-1)}{(1)(2)}e_{t-2} + \frac{-0.25(-0.25-1)(-0.25-2)}{(1)(2)(3)}e_{t-3} + \cdots$$

$$= e_{t} + 0.25e_{t-1} + \frac{0.25(0.25+1)}{(1)(2)}e_{t-2} + \frac{0.25(0.25+1)(0.25+2)}{(1)(2)(3)}e_{t-3} + \cdots$$

$$= e_{t} + 0.25e_{t-1} + 0.16e_{t-2} + 0.12e_{t-3} + 0.10e_{t-4} + \cdots + 0.04e_{t-10}$$

The coefficient of
$$e_{t-k}$$
 is
$$\frac{0.25(0.25+1)\cdots(0.25+k-1)}{(1)(2)\cdots(k)} = \frac{\Gamma(0.25+k)}{\Gamma(0.25)\Gamma(k+1)}$$

Here, $\Gamma()$ is the Gamma function: $\Gamma(p+1) = p\Gamma(p)$.

It is a generalization of factorial. For integer p, $\Gamma(p+1) = p!$

For example,
$$\Gamma(3) = 2$$
, $\Gamma(2) = 1$, $\Gamma(1) = 1$, $\Gamma(0) = \infty$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k 38lrd.htm

©2013 Rai Jain

FARIMA Models and LRD

Consider FARIMA(0, δ , 0) with $-1/2 < \delta < 1/2$ and $\delta \neq 0$.

$$x_t = (1 - B)^{-\delta} e_t = \sum_{k=0}^{\infty} b_k e_{t-k}$$

Where:

$$b_k = \frac{\Gamma(k+\delta)}{\Gamma(\delta)\Gamma(k+1)}$$

Since e_t is Gaussian, x_t is also Gaussian.

 e_t is Gaussian Noise, x_t is fractional Gaussian Noise (fGn)

38-22

FARIMA and LRD (Cont)

The autocovariance of the FARIMA(0, δ ,0) sequence is:

$$E[x_t x_{t-k}] = \begin{cases} \sigma^2 \frac{\Gamma(1-2\delta)}{\Gamma^2(1-\delta)} & k = 0\\ \sigma^2 \frac{\Gamma(k+\delta)\Gamma(1-2\delta)}{\Gamma(k-\delta+1)\Gamma(\delta)\Gamma(1-\delta)} & k \neq 0 \end{cases}$$

- □ Autocorrelation at lag k: $r_k = \frac{\Gamma(k+\delta)\Gamma(1-\delta)}{\Gamma(k-\delta+1)\Gamma(\delta)}$
- □ Stirling's approximation: $\Gamma(p+1) \approx \sqrt{2\pi p} \left(\frac{p}{e}\right)^p$
- ho For large k, r_k tends to $ck^{2\delta l}$ where $c = \frac{\Gamma(1 \delta)}{\Gamma(\delta)}$
- Recall that for LRD: $r(k) \to k^{2H-2}L(k)$ $k \to \infty$ \Rightarrow 2H-2=2 δ -1, that is, H= δ +1/2. \Rightarrow A FARIMA(0, δ ,0) sequence has LRD if 0< δ <1/2.

Generating LRD Sequences

- Generate the FARIMA(p, $d+\delta$, q) LRD sequence
- FARIMA(p, d+ δ , q) = ARIMA(p, d, q) with e_t replaced by fractional Gaussian noise generated by FARIMA(0, δ , 0)
- \square ARIMA(p,d,q) is given by

$$\phi(B)(1-B)^d x_t = a_0 + \psi(B)e_t$$

- ☐ It can be generated by one of the following two methods:
- 1. Using previous values of x_t :

$$x_t = a_0 + (1 - \phi(B)(1 - B)^d)x_t + \psi(B)e_t$$

Generating LRD Sequences (Cont)

2. Converting the model to a moving average model using a Taylor series expansion:

$$x_t = \frac{\psi(B)}{\phi(B)(1-B)^d} e_t = \left(\sum_{i=0}^m c_i B^i\right) e_t = \sum_{i=0}^m c_i e_{t-i}$$

Here c_i are coefficients of the Taylor series expansion and m is selected large enough so that c_i for i > m are negligible.

- Generate a white noise sequence $e_i \sim N(0, 1)$
- Generate a FARIMA(0, δ , 0) sequence y_i using a moving average of a large number m of e_i :

$$y_i = \sum_{k=0}^{m} \frac{\Gamma(k+\delta)}{\Gamma(k+1)\Gamma(\delta)} e_{i-k}$$

Washington University in St. Louis

Generating LRD Sequences (Cont)

Generate a FARIMA(p, d+ δ , q) sequence x_i by generating a usual ARIMA(p, d, q) as in Step 1 above with the white noise e_i replaced by y_i

$$x_t = a_0 + \frac{\psi(B)}{\phi(B)(1-B)^d}y(i)$$

□ m=100 or m=1000 has been found to provide good results.

 \Box Generate a FARIMA(0,0.25,0) Sequence

$$x_{t} = (1-B)^{-0.25}e_{t}$$

$$= e_{t} + 0.25e_{t-1} + \frac{0.25(0.25+1)}{2}e_{t-2} + \frac{0.25(0.25+1)(0.25+2)}{6}e_{t-3} + \cdots$$

$$= e_{t} + 0.25e_{t-1} + 0.16e_{t-2} + 0.12e_{t-3} + 0.10e_{t-4} + \cdots + 0.04e_{t-10}$$

- □ Generate $\underline{60}$ N(0,1) random numbers for e_{-9} thru e_{50}
- \square Use the above equation to get x_1 through x_{50}
- The numbers are: -2.16, -0.77, -2.23, 0.61, -0.93, -1.85, -1.68, -1.15, -0.96, -0.27, 0.33, -0.18, 0.32, -0.23, -1.90, 0.54, 0.27, -0.02, 0.04, 1.58, 0.23, -0.43, -0.48, 0.19, 1.16, 0.60, 1.61, -0.23, 1.08, 0.22, 1.63, -0.48, 0.51, -0.51, 0.74, -1.53, -0.63, -0.10, 0.01, -0.19, -1.35, -1.19, -1.36, -0.29, 0.87, 1.70, 0.97, 1.70, 1.18, 0.20

Hurst Exponent Estimation

Variance-time plot (Similar to the method of independent runs)

- 1. Start with m=1
- Divide the sample of size n in to non-overlapping subsequences of length m. There will be $j = \lfloor n/m \rfloor$ such subsequences.
- 3. Take the sample mean of each subset

$$\bar{x}_{km} = \frac{1}{m} \sum_{i=(k-1)m+1}^{i=km} x_i \qquad k = 1, 2, 3, \dots, j$$

4. Compute the overall mean:

$$\bar{\bar{x}}_m = \frac{1}{j} \sum_{k=1}^{k=j} \bar{x}_{km}$$

Hurst Parameter Estimation (Cont)

5. Compute the variance of the sample means

$$s_m^2 = \frac{1}{j-1} \sum_{k=1}^{k=j} (\bar{x}_{k,m} - \bar{\bar{x}}_m)^2$$

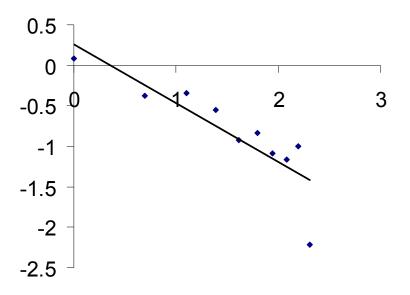
- 6. Repeat steps 2 through 5 for m=1, 2, 3, ...
- 7. Plot variance s_m^2 as a function of the subsequence size m on a log-log graph
- 8. Fit a simple linear regression to log(var) vs. log(m).
- 9. The slope of the regression line is 2H-2.
- 10. That is, the Hurst exponent is $1+a_1/2$, where a_1 is the slope of the regression line.

Note: 1. H estimate using this variance time plot method is biased

2. If a process is non-stationary, it may not be self-similar or have LRD, but may result in Hurst exponent between 0.5 and 1

Determine the Hurst exponent for the data of Example 38.5

m	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00
Mean	-0.21	-0.19	-0.18	-0.13	-0.11	-0.05	-0.07	-0.05	-0.04	0.07
Variance	0.99	0.52	0.62	0.44	0.34	0.36	0.35	0.16	0.36	0.11
ln(m)	0.00	0.69	1.10	1.39	1.61	1.79	1.95	2.08	2.20	2.30
In(Variance)	-0.01	-0.65	-0.48	-0.82	-1.06	-1.03	-1.04	-1.82	-1.03	-2.25



Slope =
$$-0.73$$

H = $1 - 0.73/2 = 0.635$
ARIMA $(0,0.25,0) \Rightarrow H=0.75$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k 38lrd.htm

- 1. Heavy tailed distributions: CCDF tail higher than exponential distribution
- 2. Self-Similar Process: $x_{at} \sim a^H x_t$
- 3. Long Range Dependence: $\sum r_k = \infty$
- 4. ARIMA(p,d+ δ ,q) with 0< δ <0.5 can be used to generate LRD sequences
- 5. Hurst parameter can be estimated with variance-time plots. For LRD 0.5<H<1.

References

- □ Fractals, http://mathworld.wolfram.com/Fractal.html
- □ O. Sheluhin, S. M. Smolskiy, and A. V. Osin, "Self-Similar Processes in Telecommunications," Wiley, Chichester, England, 2007, 314 pp.
- □ P. Doukhan, G. Oppenheim, and M. S. Taqqu, (Eds), "Theory and Applications of Long Range Dependence," Birkhauser, Boston, MA.
- K. Park, W. Willinger, (Eds), "Self-Similar Network Traffic and Performance Evaluation," Wiley, New York, NY, 2000.
- □ R. J. Adler, R. E. Feldman, and M. S. Taqqu, (Eds), "A Practical Guide to Heavy Tails," Birkhauser, Boston, 1998