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OverviewOverview



 

What is a time series?


 

Autoregressive Models


 

Moving Average Models


 

Integrated Models


 

ARMA, ARIMA, SARIMA, FARIMA models
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What is a Time SeriesWhat is a Time Series



 

Time series = Stochastic Process 


 

A sequence of observations over time.


 

Examples:


 

Price of a stock over successive days


 

Sizes of video frames


 

Sizes of packets over network


 

Sizes of queries to a database system


 

Number of active virtual machines in a cloud 


 

Goal: Develop models of such series for resource 
allocation and improving user experience.

Time t

xt
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Autoregressive ModelsAutoregressive Models



 

Predict the variable as a linear regression of the 
immediate past value:



 

Here,       is the best estimate of xt

 

given the past history



 

Even though we know the complete past history, we 
assume that xt

 

can be predicted based on just xt-1

 

.


 

Auto-Regressive = Regression on Self


 

Error:


 

Model:


 

Best a0

 

and a1

 

 minimize the sum of square of errors
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Example 36.1Example 36.1


 

The number of disk access for 50 database queries were measured to be: 73, 
67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78, 
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92,

 

89, 116, 71, 
68, 59, 84, 39, 33, 71, 83, 77, 37, 27, 30.



 

For this data:
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Example 36.1 (Cont)Example 36.1 (Cont)



 

SSE = 32995.57
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Stationary ProcessStationary Process


 

Each realization of a random process will be different:



 

x
 

is function of the realization i
 

(space) and time t: x(i, t)


 

We can study the distribution of xt

 

in space.


 

Each xt

 

has a distribution, e.g., Normal


 

If this same distribution (normal) with the same parameters μ, 
σ

 
applies to xt+1

 

, xt+2

 

, …, we say xt

 

is stationary.

xt

t
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Stationary Process (Cont)Stationary Process (Cont)



 

Stationary = Standing in time 
 Distribution does not change with time.



 

Similarly, the joint distribution of xt

 

and xt-k

 

depends only on k
 not on t.



 

The joint distribution of xt

 

, xt-1

 

, …, xt-k

 

depends only on k
 

not 
on t.
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AssumptionsAssumptions



 

Linear relationship between successive values


 

Normal Independent identically distributed errors:


 

Normal errors


 

Independent errors


 

Additive errors


 

xt

 

is a Stationary process
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Visual TestsVisual Tests
1.

 

xt

 

vs. xt-1

 

for linearity
2.

 

Errors et

 

vs. predicted values      for additivity
3.

 

Q-Q Plot of errors for Normality
4.

 

Errors et

 

vs. t
 

for Stationarity
5.

 

Correlations for Independence
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Visual Tests (Cont)Visual Tests (Cont)
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AR(p) ModelAR(p) Model



 

xt

 

is a function of the last p values:



 

AR(2):



 

AR(3):
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Similarly,


 

Or



 

Using this notation, AR(p) model is:



 

Here, φp
 

is a polynomial of degree p.

Backward Shift OperatorBackward Shift Operator
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AR(p) Parameter EstimationAR(p) Parameter Estimation



 

The coefficients ai

 

's can be estimated by minimizing SSE using 
Multiple Linear Regression.



 

Optimal a0

 

, a1

 

, and a2

 


 

Minimize SSE 
Set the first differential to zero:
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AR(p) Parameter Estimation (Cont)AR(p) Parameter Estimation (Cont)



 

The equations can be written as:
 

Note: All sums are for t=3 to n. n-2
 

terms.


 

Multiplying by the inverse of the first matrix, we get:



36-16
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/Washington University in St. Louis

Example 36.2Example 36.2



 

Consider the data of Example 36.1 and fit an AR(2) 
model:



 

SSE= 31969.99 
(3% lower than 32995.57 for AR(1) model)
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Assumptions and Tests for AR(p)Assumptions and Tests for AR(p)



 

Assumptions:


 

Linear relationship between xt

 

and {xt-1

 

, ..., xt-p

 

}


 

Normal Independent identically distributed errors:


 

Normal errors


 

Independent errors


 

Additive errors


 

xt

 

is stationary


 

Visual Tests: Similar to AR(1).
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AutocorrelationAutocorrelation


 

Covariance of xt

 

and xt-k

 

= Auto-covariance at lag k



 

For a stationary series, the statistical characteristics do not 
depend upon time t.



 

Therefore, the autocovariance depends only on lag k
 

and not on 
time t.



 

Similarly,
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Autocorrelation (Cont)Autocorrelation (Cont)


 

Autocorrelation is dimensionless and is easier to interpret than
 autocovariance.



 

It can be shown that autocorrelations are normally distributed 
with mean:

 
and variance:



 

Therefore, their 95% confidence interval is
 This is generally approximated as
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White NoiseWhite Noise


 

Errors et

 

are normal independent and identically distributed 
(IID) with zero mean and variance σ2



 

Such IID sequences are called “white noise”
 

sequences.


 

Properties:

k0
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White Noise (Cont)White Noise (Cont)


 

The autocorrelation function of a white noise sequence is a 
spike (δ

 
function) at k=0.



 

The Laplace transform of a δ
 

function is a constant. So in 
frequency domain white noise has a flat frequency spectrum.



 

It was incorrectly assumed that white light has no color and, 
therefore, has a flat frequency spectrum and so random noise 
with flat frequency spectrum was called white noise.



 

Ref: http://en.wikipedia.org/wiki/Colors_of_noise

t0 f0

http://en.wikipedia.org/wiki/Colors_of_noise
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Consider the data of Example 36.1. The AR(0) model is:



 

SSE = 43702.08

Example 36.3Example 36.3
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Moving Average (MA) ModelsMoving Average (MA) Models



 

Moving Average of order 1: MA(1)



 

Moving Average of order 2: MA(2)



 

Moving Average of order q: MA(q)



 

Moving Average of order 0: MA(0) (Note: This is also AR(0))
 xt

 

-a0

 

is a white noise. a0

 

is the mean of the time series.

t
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MA Models (Cont)MA Models (Cont)



 

Using the backward shift operator B, MA(q):



 

Here, ψq
 

is a polynomial of order q.
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Determining MA ParametersDetermining MA Parameters



 

Consider MA(1):



 

The parameters a0

 

and b1

 

cannot be estimated using 
standard regression formulas since we do not know 
errors. The errors depend on the parameters.



 

So the only way to find optimal a0

 

and b1

 

is by 
iteration. 
 Start with some suitable values and change a0

 

and 
b1

 

until SSE is minimized and average of errors is 
zero.
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Example 36.4Example 36.4


 

Consider the data of Example 36.1.



 

For this data:



 

We start with a0

 

= 67.72, b1

 

=0.4, 
Assuming e0

 

=0, compute all the errors and SSE.
 

and SSE = 33542.65



 

We then adjust a0

 

and b1

 

until SSE is minimized and mean 
error is close to zero. 
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Example 36.4 (Cont)Example 36.4 (Cont)


 

The steps are: Starting with              and b1

 

=0.4, 0.5, 0.6
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Autocorrelations for MA(1)Autocorrelations for MA(1)


 

For this series, the mean is:



 

The variance is:



 

The autocovariance at lag 1 is:
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Autocorrelations for MA(1) (Cont)Autocorrelations for MA(1) (Cont)


 

The autocovariance at lag 2 is:



 

For MA(1), the autocovariance at all higher lags (k>1) is 0.


 

The autocorrelation is:



 

The autocorrelation of MA(q) series is non-zero only 
for lags k<

 
q and is zero for all higher lags.
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Determining the Order MA(q)Determining the Order MA(q)



 

The order of the last significant rk

 

determines the 
order of the MA(q) model.

Lag k

Autocorrelation rk

0

q=8
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Determining the Order AR(p)Determining the Order AR(p)


 

ACF of AR(1) is an exponentially decreasing fn of k


 

Fit AR(p) models of order p=0, 1, 2, …


 

Compute the confidence intervals of ap

 

:


 

After some p, the last coefficients ap

 

will not be significant for 
all higher order models.



 

This highest p
 

is the order of the AR(p) model for the series.


 

This sequence of last coefficients is also called "Partial 
Autocorrelation Function

 
(PACF)"

Lag k

PACF(k)

0

p=8

rk

k
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NonNon--Stationarity: Integrated ModelsStationarity: Integrated Models


 

In the white noise model AR(0):


 

The mean a0

 

is independent of time.


 

If it appears that the time series in increasing approximately 
linearly with time, the first difference of the series can be 
modeled as white noise:



 

Or using the B operator: (1-B)xt

 

= xt

 

-xt-1



 

This is called an "integrated" model of order 1 or I(1). Since the 
errors are integrated to obtain x.



 

Note that xt

 

is not stationary but (1-B)xt

 

is stationary.

t

xt

t

(1-B)xt



36-33
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/Washington University in St. Louis

Integrated Models (Cont)Integrated Models (Cont)


 

If the time series is parabolic, the second difference can be 
modeled as white noise:



 

Or
 This is an I(2) model.

t

xt
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ARMA and ARIMA ModelsARMA and ARIMA Models



 

It is possible to combine AR, MA, and I models


 

ARMA(p, q) Model:



 

ARIMA(p,d,q) Model:
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NonNon--Stationarity due to SeasonalityStationarity due to Seasonality


 

The mean temperature in December is always lower than that 
in November and in May it always higher than that in March 
Temperature has a yearly season.



 

One possible model could be I(12):



 

or



36-36
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/Washington University in St. Louis

Seasonal ARIMA (SARIMA) ModelsSeasonal ARIMA (SARIMA) Models



 

SARIMA                           Model:



 

Fractional ARIMA (FARIMA) Models 
ARIMA(p, d+δ, q)  -0.5<δ<0.5

 Fractional Integration allowed.
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Observation: Every 15th

 

frame is a large (I) frame.

I Frames

Case Study: Mobile VideoCase Study: Mobile Video
I = Independent
P = Predicted
B = Bi-Directional Predicted
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A closer look at the ACF graph shows a strong continual 
correlation every  15 lag   GOP size

Traffic Modeling Traffic Modeling ––
 

All FramesAll Frames

Result: SARIMA (1, 0, 1)x(1,1,1)s

 

Model, s=group size =15
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SummarySummary



 

AR(1) Model:



 

MA(1) Model:



 

ARIMA(1,1,1) Model:



 

Seasonal ARIMA (1,0,1)x(0,1,0)12

 

model:
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