

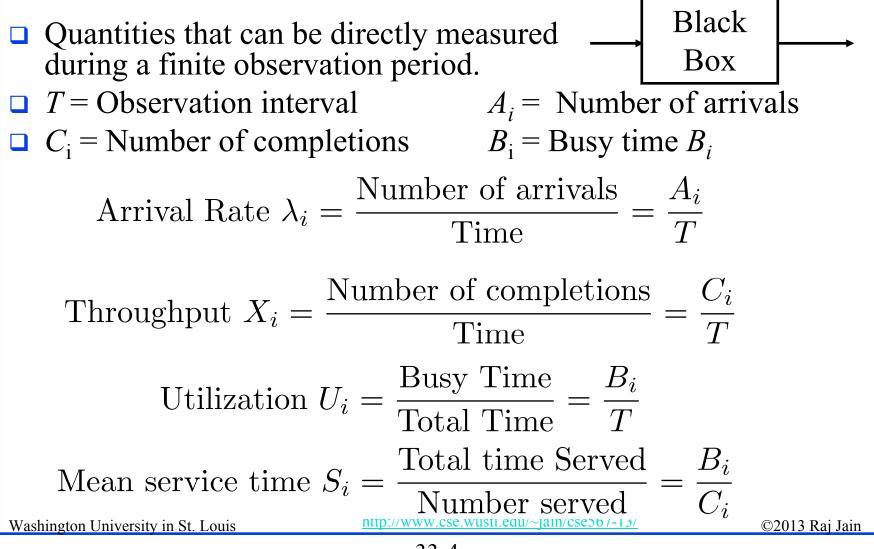
33-1

❑ What is an Operational Law?

- 1. Utilization Law
- 2. Forced Flow Law
- 3. Little's Law
- 4. General Response Time Law
- 5. Interactive Response Time Law
- 6. Bottleneck Analysis

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/


Operational Laws

- Relationships that do not require any assumptions about the distribution of service times or inter-arrival times.
- Identified originally by Buzen (1976) and later extended by Denning and Buzen (1978).
- $\Box \quad \textbf{Operational} \Rightarrow \text{Directly measured.}$
- Operationally testable assumptions
 - \Rightarrow assumptions that can be verified by measurements.
 - For example, whether number of arrivals is equal to the number of completions?
 - This assumption, called job flow balance, is operationally testable.
 - A set of observed service times is or is not a sequence of independent random variables is not is not operationally testable.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Operational Quantities

³³⁻⁴

Utilization Law

Utilization U_i =

$$= \frac{\text{Busy Time}}{\text{Total Time}} = \frac{B_i}{T}$$
$$= \frac{C_i}{T} \times \frac{B_i}{C_i} = \frac{\text{Completions}}{\text{Time}} \times \frac{\text{Busy Time}}{\text{Completions}}$$
$$= \text{Throughput} \times \text{Mean Service Time} = X_i S$$

□ This is one of the operational laws

 Operational laws are similar to the elementary laws of motion For example,

$$d = \frac{1}{2}at^2$$

Notice that distance *d*, acceleration *a*, and time *t* are
 operational quantities. No need to consider them as expected values of random variables or to assume a distribution.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

- Consider a network gateway at which the packets arrive at a rate of 125 packets per second and the gateway takes an average of two milliseconds to forward them.
- □ Throughput X_i = Exit rate = Arrival rate = 125 packets/second
- Service time $S_i = 0.002$ second
- Utilization $U_i = X_i S_i = 125 \times 0.002 = 0.25 = 25\%$
- This result is valid for any arrival or service process.
 Even if inter-arrival times and service times to are not IID random variables with exponential distribution.

Forced Flow Law

- Relates the system throughput to individual device throughputs.
- In an open model,
 System throughput
 = # of jobs leaving the system per unit time
- In a closed model, System throughput
 = # of jobs traversing OUT to IN link per unit time.
- □ If observation period *T* is such that $A_i = C_i$ ⇒ Device satisfies the assumption of *job flow balance*.
- □ Each job makes V_i requests for i^{th} device in the system
- $\Box C_i = C_0 V_i \text{ or } V_i = C_i / C_0 V_i \text{ is called visit ratio}$

• System throughput
$$X = \frac{\text{Jobs completed}}{\text{Total time}} = \frac{C_0}{T}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Forced Flow Law (Cont)

□ Throughput of *i*th device:

Device Throughput
$$X_i = \frac{C_i}{T} = \frac{C_i}{C_0} \times \frac{C_0}{T}$$

□ In other words:

$$X_i = XV_i$$

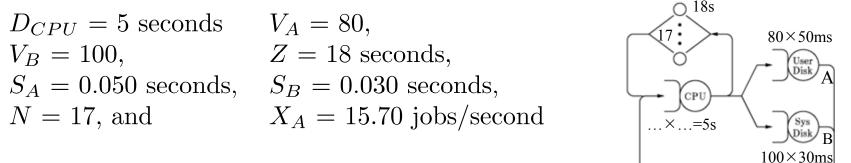
□ This is the **forced flow law**.

Washington University in St. Louis

Bottleneck Device

• Combining the forced flow law and the utilization law, we get:

Utilization of
$$i^{\text{th}}$$
 device $U_i = X_i S_i$
= $XV_i S_i$
 $U_i = XD_i$


- □ Here $D_i = V_i S_i$ is the total service demand on the device for all visits of a job.
- □ The device with the highest D_i has the highest utilization and is the **bottleneck device**.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

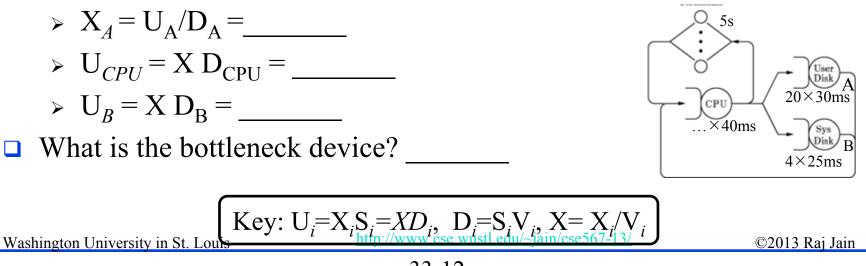
□ In a timesharing system, accounting log data produced the following profile for user programs.

- Each program requires five seconds of CPU time, makes 80 I/O requests to the disk A and 100 I/O requests to disk B.
- > Average think-time of the users was 18 seconds.
- From the device specifications, it was determined that disk A takes 50 milliseconds to satisfy an I/O request and the disk B takes 30 milliseconds per request.
- With 17 active terminals, disk A throughput was observed to be 15.70 I/O requests per second.
- □ We want to find the system throughput and device utilizations.

Washington University in St. Louis

Example 33.2 (Cont)

 $\begin{array}{ll} D_{CPU} = 5 \text{ seconds} & V_A = 80, \\ V_B = 100, & Z = 18 \text{ seconds}, \\ S_A = 0.050 \text{ seconds}, & S_B = 0.030 \text{ seconds}, \\ N = 17, \text{ and} & X_A = 15.70 \text{ jobs/second} \end{array}$


Since the jobs must visit the CPU before going to the disks or terminals, the CPU visit ratio is: $V_{CPU} = V_A + V_B + 1 = 181$ $D_{CPU} = 5$ seconds $D_A = S_A V_A = 0.050 \times 80 = 4$ seconds $D_B = S_B V_B = 0.030 \times 100 = 3$ seconds Using the forced flow law, the throughputs are: $X = \frac{X_A}{V_A} = \frac{15.70}{80} = 0.1963$ jobs/second $X_{CPU} = XV_{CPU} = 0.1963 \times 181$ 18s = 35.48 requests/second $80 \times 50 \text{ms}$ $X_{R} = XV_{R} = 0.1963 \times 100$ Α = 19.6 requests/second Using the utilization law, the device utilizations are: $\ldots \times \ldots = 5s$ $U_{CPU} = XD_{CPU} = 0.1963 \times 5 = 98\%$ Disl B 100×30 ms $U_A = XD_A = 0.1963 \times 4 = 78.4\%$ $U_B = XD_B = 0.1963 \times 3 = 58.8\%$ http://www.cse.wustl.edu/~jain/cse567-13/ Washington University in St. Louis ©2013 Rai Jain

³³⁻¹¹

Homework 33A

- The visit ratios and service time per visit for a system are as shown:
- □ For each device what is the total service demand:
 - > CPU: $V_i = _, S_i = _, D_i = _$
 - > Disk A: $V_i = \underline{\qquad}, S_i = \underline{\qquad}, D_i = \underline{\qquad}$
 - > Disk B: $V_i = _, S_i = _, D_i = _$
 - > Terminals: $V_i = _, S_i = _, D_i = _$

□ If disk A utilization is 50%, what's the utilization of CPU and Disk B?

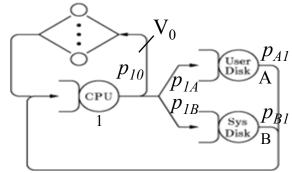
³³⁻¹²

Transition Probabilities

- p_{ij} = Probability of a job moving to jth queue after service completion at ith queue
- Visit ratios and transition probabilities are equivalent in the sense that given one we can always find the other.
- □ In a system with job flow balance: $C_j = \sum C_i p_{ij}$
- $i = 0 \Rightarrow$ visits to the outside link
- □ p_{i0} = Probability of a job exiting from the system after completion of service at i^{th} device
- **Dividing by** C_0 we get:

Washington University in St. Louis

©2013 Raj Jain


i=0

 $V_j = \sum V_i p_{ij}$

Transition Probabilities (Cont)

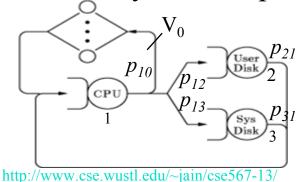
- □ Since each visit to the outside link is defined as the completion of the job, we have: $V_0 = 1$
- □ These are called visit ratio equations
- In central server models, after completion of service at every queue, the jobs always move back to the CPU queue:

$$p_{i1} = 1 \quad \forall i \neq 1$$
$$p_{ij} = 0 \quad \forall i, j \neq 1$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

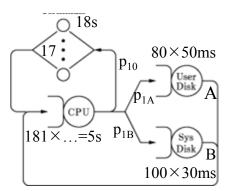
©2013 Raj Jain


33-14

Transition Probabilities (Cont)

□ The above probabilities apply to exit and entrances from the system (i=0), also. Therefore, the visit ratio equations become:

$$1 = V_1 p_{10} \implies V_1 = \frac{1}{p_{10}}$$
$$V_1 = 1 + V_2 + V_3 + \dots + V_M$$
$$V_j = V_1 p_{1j} = \frac{p_{1j}}{p_{10}} \quad j = 2, 3, \dots, M$$


□ Thus, we can find the visit ratios by dividing the probability p_{1j} of moving to j^{th} queue from CPU by the exit probability p_{10} .

Washington University in St. Louis

³³⁻¹⁵

• Consider the queueing network:

- The visit ratios are $V_A = 80$, $V_B = 100$, and $V_{CPU} = 181$.
- After completion of service at the CPU the probabilities of the job moving to disk A, disk B, or terminals are 80/181, 100/181, and 1/181, respectively. Thus, the transition probabilities are p_{1A} =0.4420, p_{1B} =0.5525, and p_{10} =0.005525.
- Given the transition probabilities, we can find the visit ratios by dividing these probabilities by the exit probability (0.005525):

$$V_A = \frac{p_{1A}}{p_{10}} = \frac{0.4420}{0.005525} = 80$$

$$V_B = \frac{p_{1B}}{p_{10}} = \frac{0.5525}{0.005525} = 100$$

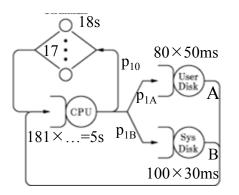
$$V_{CPU} = 1 + V_A + V_B = 1 + 80 + 100 = 181$$
Washington University in St. Louis (2013 Raj Jain)

Little's Law

Mean number in the device

= Arrival rate \times Mean time in the device

$$Q_i = \lambda_i R_i$$


□ If the job flow is balanced, the arrival rate is equal to the throughput and we can write:

$$Q_i = X_i R_i$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

The average queue length in the computer system of Example 33.2 was observed to

be: 8.88, 3.19, and 1.40 jobs at the CPU, disk A, and disk B, respectively. What were the response times of these devices?

- □ In Example 33.2, the device throughputs were determined to be: X_{CPU} = 35.48, X_A = 15.70, and X_B = 19.6
- □ The new information given in this example is:

$$Q_{CPU} = 8.88, \ Q_A = 3.19, \ \text{and} \ Q_B = 1.40$$

□ Using Little's law, the device response times are: $R_{CPU} = Q_{CPU}/X_{CPU} = 8.88/35.48 = 0.250$ seconds $R_A = Q_A/X_A = 3.19/15.70 = 0.203$ seconds $R_B = Q_B/X_B = 1.40/19.6 = 0.071$ seconds Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse567-13/</u> ©2013 Raj Jain

General Response Time Law

- There is one terminal per user and the rest of the system is shared by all users.
- □ Applying Little's law to the central subsystem:

Q = XR

□ Here,

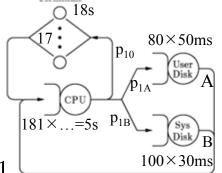
- \Box Q = Total number of jobs in the system
- \square *R* = system response time
- \Box X = system throughput

$$Q = Q_1 + Q_2 + \dots + Q_M$$

 $XR = X_1R_1 + X_2R_2 + \dots + X_MR_M$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/


©2013 Raj Jain

Central subsystem

General Response Time Law (Cont) $XR = X_1R_1 + X_2R_2 + \dots + X_MR_M$ Dividing both sides by X and using forced flow law: $R = V_1 R_1 + V_2 R_2 + \dots + V_M R_M$ or, M $R = \sum_{i=1}^{n} R_i V_i$ This is called the **general response time law**. http://www.cse.wustl.edu/~jain/cse567-13/ Washington University in St. Louis 33-20

- □ Let us compute the response time for the timesharing system of Example 33.4
- □ For this system:

 $V_{CPU} = 181, V_A = 80, \text{ and } V_B = 100$

 $R_{CPU} = 0.250, R_A = 0.203, \text{ and } R_B = 0.071$

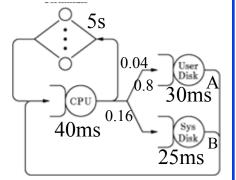
□ The system response time is:

$$R = R_{CPU}V_{CPU} + R_AV_A + R_BV_B$$

= 0.250 × 181 + 0.203 × 80 + 0.071 × 100
= 68.6

□ The system response time is 68.6 seconds.

Washington University in St. Louis


Homework 33B

- The transition probabilities of jobs exiting CPU and device service times are as shown.
- □ Find the visit ratios:

>
$$V_A = p_{1A}/p_{10} =$$

$$\sim V_{\rm B} = p_{1\rm B}/p_{10} =$$

$$\sim V_{CPU} = 1 + V_A + V_B =$$

The queue lengths at CPU, disk A, and disk B was observed to be 6, 3, and 1, respectively. The system throughput is 1 jobs/sec. What is the system response time?

$$R_{CPU} = Q_{CPU} / X_{CPU} = Q_{CPU} / (XV_{CPU}) = \underline{\qquad}$$

$$R_A = Q_A / (X_A) = \underline{\qquad}$$

$$R_A = Q_A / (X_A) = \underline{\qquad}$$

$$R_{\rm B} = Q_{\rm B}/(X_{\rm B}) = _$$

$$R = R_{CPU}V_{CPU} + R_A V_A + R_B V_B = _$$

> Check: Q=XR

Key: I

$$J_i = X_i S_i = XD_i, \quad D_i = S_i V_i, \quad X = X_i / V_i, \quad Q_i = X_i R_i, \quad R = \sum_{i=1}^{i} R_i V_i$$

Washington University in St. Louis

33-22

tp://www.cse.wustl.edu/~jain/cse56

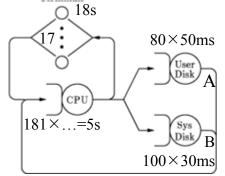
Interactive Response Time Law

- \Box If Z = think-time, R = Response time
 - > The total cycle time of requests is R+Z
 - > Each user generates about T/(R+Z) requests in T

□ If there are N users:

System throughput X = Total # of requests/Total time= N(T/(R+Z))/T= N/(R+Z)

or


$$R = (N/X) - Z$$

This is the interactive response time law

Washington University in St. Louis

□ For the timesharing system of Example 33.2:

X = 0.1963, N = 17, and Z = 18

The response time can be calculated as follows:

$$R = \frac{N}{X} - Z = \frac{17}{0.1963} - 18 = 86.6 - 18 = 68.6 \text{ seconds}$$

□ This is the same as that obtained earlier in Example 33.5.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

©2013 Raj Jain

33-24

Review of Operational Laws

Operational quantities

Can be measured by operations personnel

- $V_i = \#$ of visits per job to device *i*
- S_i = Service time per job at device *i*
- D_i = Total service demands per job at device $i = S_i V_i$
- X_i = Throughput of device i
- X = Throughput of the system

Z = User think time

- N = Number of users in a time shared system
- Operational assumptions: That can be easily validated.
 # Input = # output (flow balance) can be validated
 Distributions and independence can not be validated.
- Operational Laws: Relationships between operational quantities These apply regardless of distribution, burstiness, arrival patterns. The only assumption is flow balance.
 - 1. Utilization Law: $U=X_iS_i = XD_i$
 - 2. Forced Flow Law: $X_i = XV_i$
 - 3. Little's Law: $Q_i = X_i R_i$
 - 4. General Response Time Law: $R = \Sigma R_i V_i$
 - 5. Interactive Response Time Law: R = N/X Z

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

ties

 $V_C \times S_C = D_C$

Example

Operational quantities:

Can be measured by operations personnel

 $V_i = \#$ of visits per job to device $i = 181,80\ 100$

 S_i = Service time per job at device i = 27.6ms, 50ms, 30ms

 D_i = Total service demands per job at device $i = S_i V_i = 5s$, 4s, 3 s

Z = User think time = 18s

N = Number of users in a time shared system = 12

• Operational Laws: Given $U_A = 75\%$, $Q_A = 2.41$, $Q_B = 1.21$, $Q_C = 5$

1. Utilization Law:
$$U=X_iS_i = XD_i$$

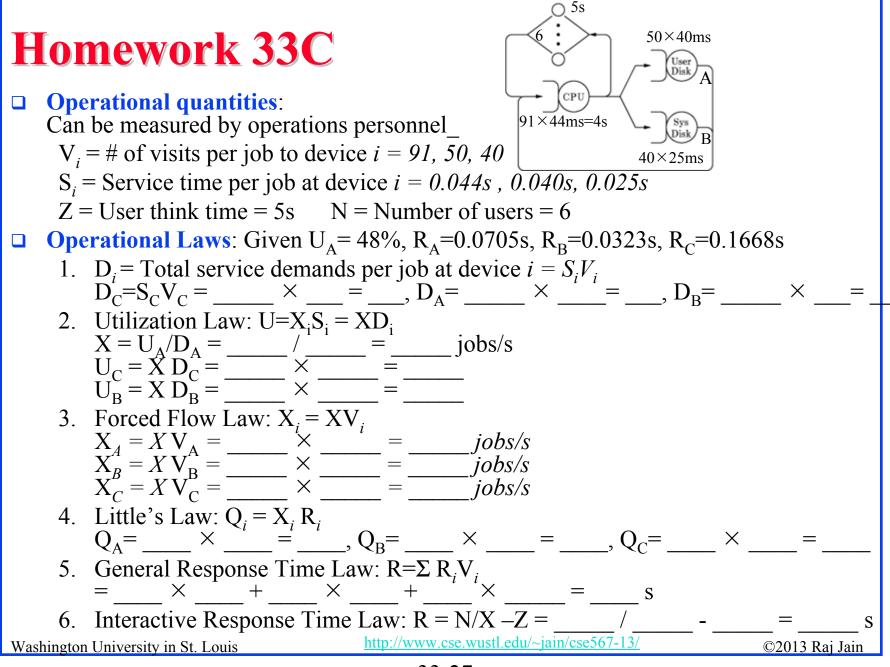
 $X = U_A/D_A = 0.75/4 = 0.188 \text{ jobs/s}$
 $U_C = X \times D_C = 0.188 \times 5 = 0.939$
 $U_B = X \times D_B = 0.188 \times 3 = 0.563$

2. Forced Flow Law:
$$X_i = XV_i$$

 $X_A = X \times 80 = 0.188 \times 80 = 15 \text{ jobs/s}$
 $X_B = X \times 100 = 0.188 \times 100 = 18.8 \text{ jobs/s}$
 $X_C = X \times 181 = 0.188 \times 181 = 34 \text{ jobs/s}$

- 3. Little's Law: $Q_i = X_i R_i$ $R_A = Q_A / X_A = 2.41 / 15 = 0.161$, $R_B = 1.21 / 18.8 = 0.064$, $R_C = 5 / 34 = 0.147$
- 4. General Response Time Law: $R=\Sigma R_i V_i = 0.161 \times 80 + 0.064 \times 100 + 0.147 \times 181 = 45.89s$

18s


 181×27.6 ms=5s

 $80 \times 50 \text{ms}$

User

 $100 \times 30 \text{ms}$

5. Interactive Response Time Law: R = N/X - Z = 12/0.188 - 18 = 45.83sWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ ©2013 Raj Jain

³³⁻²⁷

Bottleneck Analysis

□ From forced flow law:

 $U_i \propto D_i$

- The device with the highest total service demand D_i has the highest utilization and is called the bottleneck device.
- Note: Delay centers can have utilizations more than one without any stability problems. Therefore, delay centers cannot be a bottleneck device.
- □ Only queueing centers used in computing D_{max} .
- The bottleneck device is the key limiting factor in achieving higher throughput.

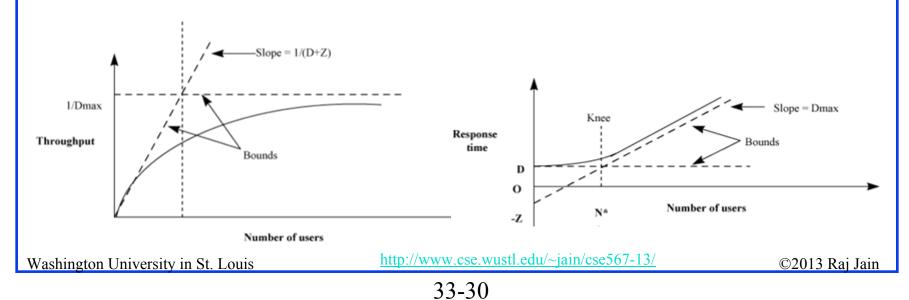
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Bottleneck Analysis (Cont)

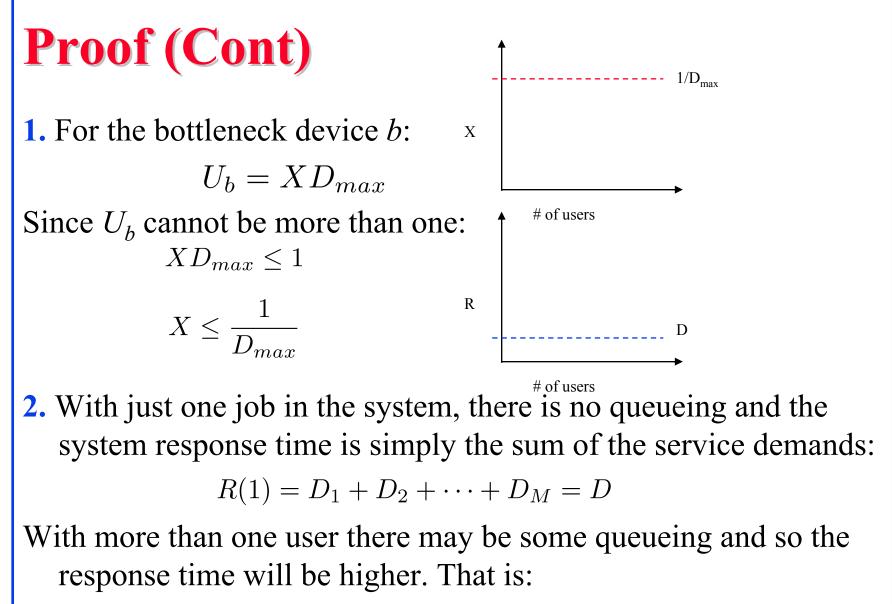
- Improving the bottleneck device will provide the highest payoff in terms of system throughput.
- Improving other devices will have little effect on the system performance.
- □ Identifying the bottleneck device should be the first step in any performance improvement project.

Asymptotic Bounds


□ Throughput and response times of the system are bound as follows: 1 N

$$X(N) \le \min\{\frac{1}{D_{max}}, \frac{N}{D+Z}\}$$

and


$$R(N) \ge max\{D, ND_{max} - Z\}$$

□ Here, $D = \sum D_i$ is the sum of total service demands on all devices except terminals.

Asymptotic Bounds: Proof

- The asymptotic bounds are based on the following observations:
 - 1. The utilization of any device cannot exceed one. This puts a limit on the maximum obtainable throughput.
 - 2. The response time of the system with *N* users cannot be less than a system with just one user. This puts a limit on the minimum response time.
 - 3. The interactive response time formula can be used to convert the bound on throughput to that on response time and vice versa.

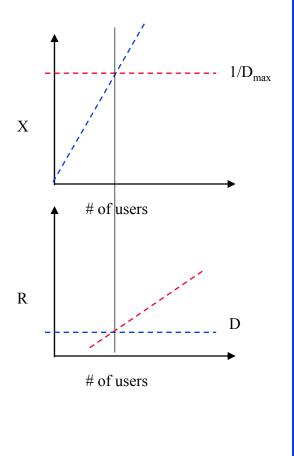
$$R(N) \ge D$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

©2013 Raj Jain

33-32


Proof (Cont)

R = (N/X) - Z

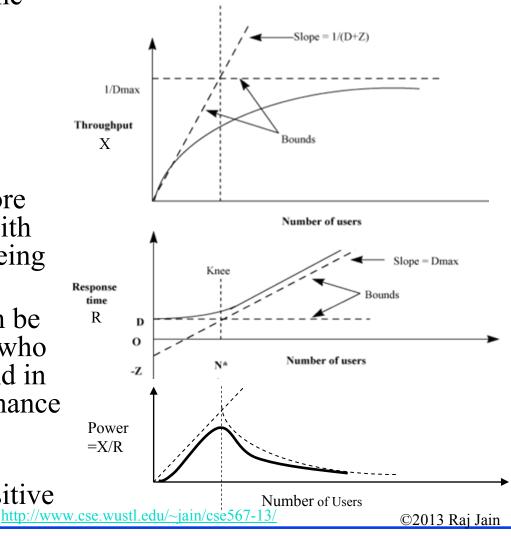
3. Applying the interactive response time law to the bounds:

 $R(N) = \frac{N}{X(N)} - Z \ge ND_{max} - Z$

$$X(N) = \frac{N}{R(N) + Z} \le \frac{N}{D + Z}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/


Optimal Operating Point

□ The number of jobs N^* at the knee is given by:

$$D = N^* D_{max} - Z$$

$$N^* = \frac{D+Z}{D_{max}}$$

- □ If the number of jobs is more than *N*^{*}, then we can say with certainty that there is queueing somewhere in the system.
- The asymptotic bounds can be easily explained to people who do not have any background in queueing theory or performance analysis.
- Control Strategy: Increase N iff dP/dN is positive Washington University in St. Louis

³³⁻³⁴

□ For the timesharing system of Example 33.2:

$$D_{CPU} = 5, D_A = 4, D_B = 3, Z = 18$$

$$D = D_{CPU} + D_A + D_B = 5 + 4 + 3 = 12$$

$$D_{max} = D_{CPU} = 5$$

□ The asymptotic bounds are:

$$X(N) \le \min\left\{\frac{N}{D+Z}, \frac{1}{D_{max}}\right\} = \min\left\{\frac{N}{30}, \frac{1}{5}\right\}$$
$$R(N) \ge \max\{D, ND_{max} - Z\} = \max\{12, 5N - 18\}$$

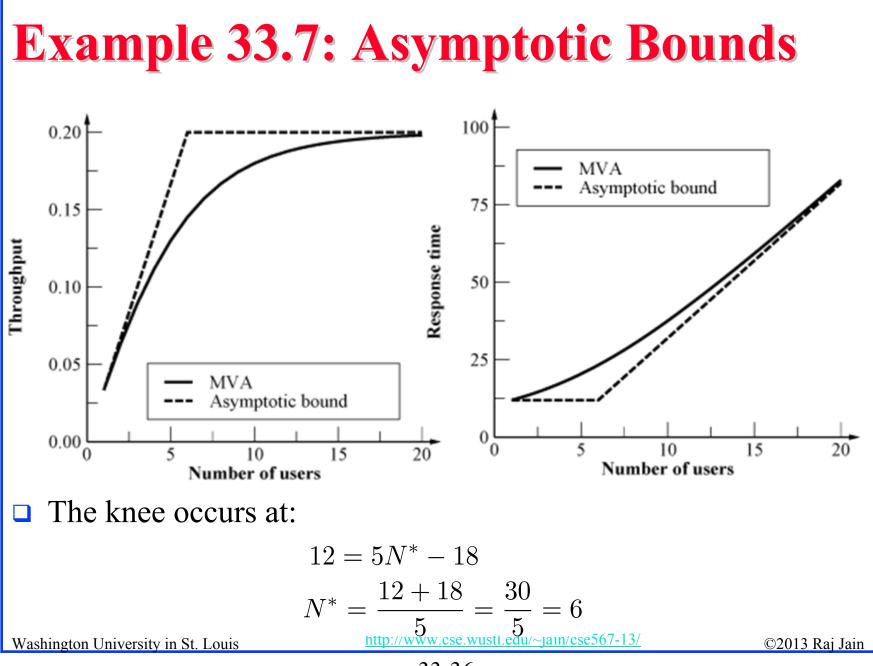
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

©2013 Raj Jain

18s

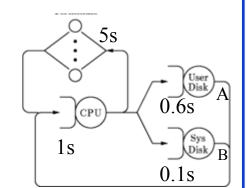
 $181 \times ... = 5s$


 $80 \times 50 \text{ms}$

User Disk

Sys Disk

100×30ms

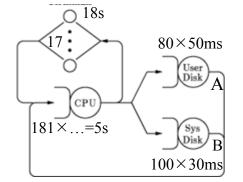

33-35

³³⁻³⁶

Homework 33D

- The total demands on various devices are as shown.
- What is the minimum response time? $R = D = D_{CPU} + D_A + D_B =$
- What is the bottleneck device?
- What is the maximum possible utilization of disk B? $U_B =$
- \Box What is the maximum possible throughput? X =
- □ What is the upper bound on throughput with N users?

©2013 Rai Jain

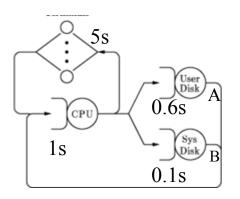

□ What is the lower bound on response time with N users?

□ What is the knee capacity of this system?

Washington University in St. Louis $\{D, ND_{max}-Z\}, X \leq \min\{1/D_{max}, N/(D+Z)\}$

- How many terminals can be supported on the timesharing system of Example 33.2 if the response time has to be kept below 100 seconds?
- Using the asymptotic bounds on the response time we get:

 $R(N) \ge \max\{12, 5N - 18\}$



- □ The response time will be more than 100, if: $5N 18 \ge 100$
- □ That is, if: $N \ge 23.6$ the response time is bound to be more than 100. Thus, the system cannot support more than 23 users if a response time of less than 100 is required.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Homework 33E

- For this system, which device would be the bottleneck if:
- □ The CPU is replaced by another unit that is twice as fast?
- Disk A is replaced by another unit that is twice as slow?
- Disk B is replaced by another unit that is twice as slow?
- The memory size is reduced so that the jobs make 25 times more visits to disk B due to increased page faults?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

	Summary						
	Utilization I					$X_i S_i = X D_i$	
Ford Litt		Forceo	orced Flow Law:		= . _	XV_i $\mathbf{Y}_i \mathbf{P}_i$	
	Genera		al Response Time Law.	$Q_i = R$	 	$\sum_{i=1}^{M} R \cdot V$	
	Int		ttle's Law: eneral Response Time Law: teractive Response Time Law: symptotic Bounds:			$\sum_{i=1}^{N} \sum_{i=1}^{i=1} \sum_$	
		Asym	ptotic Bounds:	$R \ge$	\geq	$\max\{D, ND_{max} - Z\}$	
	Symbols :			$X \leq$	\leq	$\min\{1/D_{max}, N/(D+Z)\}$	
	D	= Sum of service demands on all devices = $\sum_i D_i$					
	D_i						
	D_{max}	=	Service demand on the bottleneck device $= \max_i \{D_i\}$				
	N	=	Number of jobs in the system				
	Q_i	=	= Number in the <i>i</i> th device				
	R						
	R_i	= Response time per visit to the i th device					
	S_i						
	U_i	=					
	V_i	=	Number of visits per job to the i th device				
	X	=	System throughput				
	X_i	=	01				
	Z	=	Think time				
	Washington University in	n St. Lou	iis <u>http://www.cse</u>	.wustl.e	du/~j	ain/cse567-13/ ©2013 Raj Jain	
22 40							