Random Number Generation Generation

> Raj Jain Washington University Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse567-13/

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ \bigcirc 2013 Raj Jain

26-1

Random-Number Generation

- **Q** Random Number = Uniform $(0, 1)$
- \Box Random Variate = Other distributions
	- = Function(Random number)

A Sample Generator A Sample Generator

$$
x_n = f(x_{n-1}, x_{n-2}, \ldots)
$$

O For example, $x_n = 5x_{n-1} + 1 \mod 16$

- \Box Starting with $x_0=5$: $x_1 = 5(5) + 1 \mod 16 = 26 \mod 16 = 10$ \Box The first 32 numbers obtained by the above procedure 10, 3, 0,
- 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5.
- \Box By dividing x's by 16: 0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125.

Terminology Terminology

- \Box Seed = x_0
- \Box **Pseudo-Random**: Deterministic yet would pass randomness tests
- \Box Fully Random: Not repeatable
- **Cycle length**, **Tail**, **Period**

Properties of a Good Generator Properties of a Good Generator

- \Box It should be efficiently computable.
- **The period should be large.**
- **□** The successive values should be independent and uniformly distributed

Types of Generators Types of Generators

- **<u>Example</u>** Linear congruential generators
- **Q** Tausworthe generators
- **□** Extended Fibonacci generators
- **Q** Combined generators

Linear-Congruential Generators

- \Box Discovered by D. H. Lehmer in 1951
- \Box The residues of successive powers of a number have good randomness properties.

$$
x_n = a^n \bmod m
$$

Equivalently,

$$
x_n = ax_{n-1} \bmod m
$$

a = multiplier *m* = modulus

26-8

LCG (Cont) LCG (Cont)

- \Box Lehmer's choices: $a = 23$ and $m = 10^8 + 1$
- Good for ENIAC, an 8-digit decimal machine.
- **Generalization:**

 $x_n = ax_{n-1} + b \mod m$

□ Can be analyzed easily using the theory of congruences \Rightarrow Mixed Linear-Congruential Generators or Linear-Congruential Generators (LCG) Mixed = both multiplication by *^a* and addition of *b*

26-9

Selection of LCG Parameters

- *a, b*, and *^m* affect the period and autocorrelation
- \Box The modulus *^m* should be large.
- \Box The period can never be more than *m.*
- For mod *m* computation to be efficient, *^m* should be a power

of $2 \Rightarrow$ Mod *m* can be obtained by truncation.

LCG Parameters (Cont) LCG Parameters (Cont)

- **□** If *b* is nonzero, the maximum possible period *m* is obtained if and only if:
- \blacktriangleright Integers *^m* and *b* are relatively prime, that is, have no common factors other than 1.
- \blacktriangleright Every prime number that is a factor of *^m* is also a factor of *a*-1.
- \blacktriangleright If integer *^m* is a multiple of 4, *a*-1 should be a multiple of 4.
- \blacktriangleright Notice that all of these conditions are met if $m=2^k$, $a=4c+1$, and *b* is odd. Here, *c, b*, and *k* are positive integers.

Period vs. Autocorrelation Period vs. Autocorrelation

 \Box A generator that has the maximum possible period is called a full-period generator.

$$
x_n = (2^{34} + 1)x_{n-1} + 1 \mod 2^{35}
$$

$$
x_n = (2^{18} + 1)x_{n-1} + 1 \mod 2^{35}
$$

- **Lower autocorrelations between successive numbers are** preferable.
- \Box Both generators have the same full period, but the first one has a correlation of 0.25 between x_{n-1} and x_n , whereas the second one has a negligible correlation of less than 2-18

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

Multiplicative LCG Multiplicative LCG

■ Multiplicative LCG: *b*=0

```
x_n = ax_{n-1} \mod m
```

```
\Box Two types:
```

$$
m = 2^k
$$

$$
m \neq 2^k
$$

Multiplicative LCG with m=2^k

- \Box *m* = 2^{*k*} \Rightarrow trivial division
	- \Rightarrow Maximum possible period 2^{k-2}
- **Period achieved if multiplier a is of the form** $8i \pm 3$ **,** and the initial seed is an odd integer
- **One-fourth the maximum possible may not be too** small
- **I** Low order bits of random numbers obtained using multiplicative LCG's with $m=2^k$ have a cyclic pattern

Example 26.1a Example 26.1a

$$
x_n = 5x_{n-1} \mod 2^5
$$

\n- □ Using a seed of
$$
x_0 = 1
$$
:\n
	\n- 5, 25, 29, 17, 21, 9, 13, 1, 5,...
	\n\n
\n- Period = $8 = 32/4$
\n- □ With $x_0 = 2$, the sequence is: 10, 18, 26, 2, 10,...
\n- Here, the period is only 4.
\n

Example 26.1b Example 26.1b

 \Box Multiplier not of the form $8i \pm 3$:

$$
x_n = 7x_{n-1} \bmod 2^5
$$

- \Box Using a seed of $x_0 = 1$, we get the sequence: 7, 17, 23, 1, 7,…
- \Box The period is only 4

Multiplicative LCG with m≠ 2^k

 \Box Modulus $m =$ prime number

With a proper multiplier *a*, period = *m-*1

Maximum possible period = *^m*

If and only if the multiplier a is a *primitive root* of the modulus

m

```
\Boxa is a primitive root of m if and only if a^n mod m \neq 1 for n = 1,
  2, …, m-2.
```
Example 26.2 Example 26.2

 $x_n = 3x_{n-1} \mod 31$

 \Box Starting with a seed of $x_0=1$:

1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1, …

The period is 30

 \Rightarrow 3 is a primitive root of 31

With a multiplier of $a = 5: 1, 5, 25, 1, \ldots$

The period is only $3 \implies 5$ is not a primitive root of 31 $5^3 \mod 31 = 125 \mod 31 = 1$

```
Primitive roots of 31 = 3, 11, 12, 13, 17, 21, 22, and 24.
```
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

©2013 Raj Jain http://www.cse.wustl.edu/~jain/cse567-13/

Schrage's Method Schrage's Method

PRN computation assumes:

 No round-off errors, integer arithmetic and no overflows \Rightarrow Can't do it in BASIC

 \triangleright Product a x_{n-1} > Largest integer \Rightarrow Overflow **O** Identity: Where: $g(x) = a(x \mod q) - r(x \text{ div } q)$ And: $h(x) = (x \text{ div } q) - (ax \text{ div } m)$ Here, $q = m$ div $a, r = m$ mod a A div B' = dividing A by B and truncating the result.

 \Box For all x's in the range 1, 2, ..., m-1, computing $g(x)$ involves numbers less than m-1.

If $r < q$, $h(x)$ is either 0 or 1, and it can be inferred from $g(x)$; $h(x)$ is 1 if and only if $g(x)$ is negative.

Example 26.3 Example 26.3

$$
x_n = 7^5 x_{n-1} \bmod (2^{31} - 1)
$$

2³¹-1 = 2147483647 = prime number

- \Box 7⁵ = 16807 is one of its 534,600,000 primitive roots
- The product a x_{n-1} can be as large as 16807×2147483647 $\approx 1.03\times 2^{45}.$
- Need 46-bit integers
	- $a = 16807$
	- $m = 2147483647$
		- $=$ m div $a = 2147483647$ div $16807 = 127773$

 $=$ m mod $a = 2147483647 \mod 16807 = 2836$ \boldsymbol{r}

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ **For a correct implementation,** $x_0 = 1 \Rightarrow x_{10000} = 1,043,618,065$.

26-20

Generator Using Integer Arithmetic Generator Using Integer Arithmetic FUNCTION Random (VAR x: INTEGER) : REAL; CONST $a = 16807;$ (* Multiplier *) $m = 2147483647$; (* Modulus *) $q = 127773;$ (* m div a *) $r = 2836$; $(* \t{m} \t{mod} \t{a} *)$ **VAR** x_div_q, x_mod_q, x_new: INTEGER; **BEGIN** $x_div_q := x$ DIV q; $x_{mod-q} := x$ MOD q; $x_new := a*x_model_q - r*x-div_q;$ IF $x_new \ge 0$ THEN $x := x_new$ ELSE $x := x_new + m$; WHILE x_new < 0 DO x_new := x_new ⁺ m; WHILE x_new >= ^m DO x_new := x_new - m; Random $:= x/m;$ $\lfloor x \rfloor$:= x new; Washington U_1, U_2, \ldots, U_n is the second contract of U_2 and U_3 raj U_4 and U_5 and U_6 U_7 and U_8 U_9 and U_9 U_9 and U_9 and

26-21

Generator Using Real Arithmetic
FUNCTION Random(VAR x:DOUBLE) : DOUBLE; CONST $a = 16807.0D0;$ (* Multiplier *) $m = 2147483647.0D0$; (* Modulus *) $q = 127773.0D0;$ (* m div a *) $r = 2836.0D0;$ (* m mod a *) VAR. x_div_q, x_mod_q, x_new: DOUBLE; **BEGIN** $x_div_q := TRUNC(x/q);$ $x_{mod_q} := x-q*x_div_q;$ $x_new := a*x_model_q - r*x-div_q;$ IF $x_new \ge 0.0D0$ THEN $x := x_new$ ELSE $x := x_new + m$; $x := mod(x_new, m);$ Random $:= x/m;$ W ashington University in St. Louis $\frac{1}{2}$. Let us the second contract the second $\frac{1}{2}$ and $\frac{1}{2}$ Jain

Example 26.3 (Cont) Example 26.3 (Cont)

Homework 26 Homework 26

Exercise 26.5 Updated:

Implement the following LCG using Schrage's method to avoid overflow:

 $x_n = 40014x_{n-1} \mod 2147483563$

Using a seed of x_0 =1, determine x_1 , x_{10} , x_{100} , x_{1000} , x_{10000} , x_{20000} .

Note: In Excel: x div $q = x\%q$ $r^{*}(x\%q) \neq r^{*}x\%q$

Tausworthe Generators

- **□** Need long random numbers for cryptographic applications
- Generate random sequence of binary digits $(0 \text{ or } 1)$
- \Box Divide the sequence into strings of desired length
- **Q** Proposed by Tausworthe (1965) $b_n = c_{q-1}b_{n-1} \oplus c_{q-2}b_{n-2} \oplus c_{q-3}b_{n-3} \oplus \cdots \oplus c_0b_{n-q}$
- Where c_i and b_i are binary variables with values of 0 or 1, and \oplus is the exclusive-or (mod 2 addition) operation.
- \Box Uses the last *q* bits of the sequence \Rightarrow autoregressive sequence of order *q* or AR(*q*).
- An AR(*q*) generator can have a maximum period of 2*q*-1.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

Tausworthe Generators (Cont)

 $D =$ delay operator such that $D^q b(i-q) = c_{q-1} D^{q-1} b(i-q) + c_{q-2} D^{q-2} b(i-q) + \cdots + c_0 b(i-q) \mod 2$

$$
D^{q} - c_{q-1}D^{q-1} - c_{q-2}D^{q-2} - \dots - c_0 = 0 \mod 2
$$

$$
D^{q} + c_{q-1}D^{q-1} + c_{q-2}D^{q-2} + \dots + c_0 = 0 \mod 2
$$

Characteristic polynomial:

$$
x^{q} + c_{q-1}x^{q-1} + c_{q-2}x^{q-2} + \cdots + c_{0}
$$

- \Box The period is the smallest positive integer *ⁿ* for which *xⁿ*-1 is divisible by the characteristic polynomial.
- \Box The maximum possible period with a polynomial of order *q* is 2*q*-1. The polynomials that give this period are called **primitive polynomials**.

Example 26.4 Example 26.4

 $x^7 + x^3 + 1$

 \Box Using *D* operator in place of *x:*

 $D^7b(n) + D^3b(n) + b(n) = 0 \text{ mod } 2$ $b_{n+7} + b_{n+3} + b_n = 0 \text{ mod } 2 \quad n = 0, 1, 2, ...$ Or:

\n- **a** Using the exclusive-or operator
$$
b_{n+7} \oplus b_{n+3} \oplus b_n = 0
$$
 $n = 0, 1, 2, \ldots$
\n- **b**: $b_{n+7} = b_{n+3} \oplus b_n$ $n = 0, 1, 2, \ldots$
\n

 \Box Substituting *n*-7 for *n*:

$$
b_n = b_{n-4} \oplus b_{n-7} \quad n = 7, 8, 9, \dots
$$

Example 26.4 (Cont) Example 26.4 (Cont)

Starting with $b_0 = b_1 = \cdots = b_6 = 1$: \Box $b_7 = b_3 \oplus b_0 = 1 \oplus 1 = 0$

$$
b_8\quad =\quad b_4\oplus b_1=1\oplus 1=0
$$

$$
b_9 = b_5 \oplus b_2 = 1 \oplus 1 = 0
$$

$$
b_{10} = b_6 \oplus b_3 = 1 \oplus 1 = 0
$$

 $b_{11} = b_7 \oplus b_4 = 0 \oplus 1 = 1$

 \Box The complete sequence is:

1111111 0000111 0111100 1011001 0010000 0010001 0011000 1011101 0110110 0000110 0110101 0011100 1111011 0100001 0101011 1110100 1010001 1011100 0111111 1000011 1000000.

- \Box Period = 127 or 2⁷-1 bits
- \Rightarrow The polynomial $x^7 + x^3 + 1$ is a primitive polynomial.

²⁶⁻²⁹

Generating U(0,1) Generating U(0,1)

□ Divide the sequence into successive groups of s bits and use the first *l* bits of each group as a binary fraction:

 $x_n = 0.b_{sn}b_{sn+1}b_{sn+2}b_{sn+3}\cdots b_{sn+l-1}$ Or equivalently: $x_n = \sum 2^{-j} b_{sn+j-1}$ $i=1$

Here, *^s* is a constant greater than or equal to *l* and is relatively prime to 2*q*-1.

 $s \geq l \Rightarrow x_n$ and x_j for $n \neq j$ have no bits in common

 \Box Relative prime-ness guarantees a full period 2^{*q*}-1 for *x_n*.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ \bigcirc 2013 Raj Jain

26-30

Example 26.5 Example 26.5

$$
b_n = b_{n-4} \oplus b_{n-7}
$$

 \Box The period 2^7 -1=127

 \Box *l*=8, *s*=8:

- $x_0 = 0.11111110_2 = 0.99219_{10}$
- $x_1 = 0.00011101_2 = 0.11328_{10}$
- $x_2 = 0.11100101_2 = 0.89453_{10}$
- $x_3 = 0.10010010_2 = 0.29688_{10}$
- $x_4 = 0.00000100_2 = 0.36328_{10}$
- $x_5 = 0.01001100_2 = 0.42188_{10}$

Disadvantages of Tausworthe Generators

- \Box The sequence may produce good test results over the complete cycle, it may not have satisfactory local behavior.
- \Box It performed negatively on the runs up and down test.
- \Box Although the first-order serial correlation is almost zero, it is suspected that some primitive polynomials may give poor highorder correlations.
- **□** Not all primitive polynomials are equally good.

Combined Generators Combined Generators

1. Adding random numbers obtained by two or more generators. $w_n=(x_n+y_n) \mod m$ For example, L'Ecuyer (1986):

$$
x_n = 40014x_{n-1} \mod 2147483563
$$

$$
y_n = 40692y_{n-1} \mod 2147483399
$$

This would produce:

$$
w_n = (x_n - y_n) \text{ mod } 2147483562
$$

Period = 2.3×10^{18}

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

Combined Generators (Cont) Combined Generators (Cont)

Another Example: For 16-bit computers:

$$
w_n = 157w_{n-1} \bmod 32363
$$

$$
x_n = 146x_{n-1} \mod 31727
$$

$$
y_n = 142y_{n-1} \mod 31657
$$

Use:

$$
v_n = (w_n - x_n + y_n) \mod 32362
$$

This generator has a period of 8.1 \times 10¹².

Combined Generators (Cont) Combined Generators (Cont)

- 2. Exclusive-or random numbers obtained by two or more generators.
- 3. Shuffle. Use one sequence as an index to decide which of several numbers generated by the second sequence should be returned.

Combined Generators (Cont) Combined Generators (Cont)

\Box Algorithm M:

- a) Fill an array of size, say, 100.
- b) Generate a new *yn* (between 0 and *m*-1)
- c) Index $i=1+100 y_n/m$
- *i*th element of the array is returned as the next random number
- e) A new value of x_n is generated and stored in the *i*th location

Survey of Random-Number Generators

 \Box A currently popular multiplicative LCG is:

$$
x_n = 7^5 x_{n-1} \bmod (2^{31} - 1)
$$

Used in:

- \square SIMPL/I system (IBM 1972),
- APL system from IBM (Katzan 1971),
- PRIMOS operating system from Prime Computer (1984), and

Scientific library from IMSL (1980)

- $\geq 2^{31}$ -1 is a prime number and 7⁵ is a primitive root of it \Rightarrow Full period of 2³¹-2.
- \blacktriangleright This generator has been extensively analyzed and shown to be good.
- \blacktriangleright Its low-order bits are uniformly distributed.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

Survey of Survey of RNG's (Cont)

□ Fishman and Moore (1986)'s exhaustive search of $m=2^{31}-1$:

 $x_n = 48271x_{n-1} \mod (2^{31} - 1)$

 $x_n = 69621x_{n-1} \mod (2^{31} - 1)$

 \Box SIMSCRIPT II.5 and in DEC-20 FORTRAN:

 $x_n = 630360016x_{n-1} \mod (2^{31} - 1)$

Survey of Survey of RNG's (Cont)

 \Box ``RANDU'' (IBM 1968): Very popular in the 1960s:

$$
x_n = (2^{16} + 3)x_{n-1} \bmod 2^3
$$

- Modulus and the multiplier were selected primarily to facilitate easy computation.
- \triangleright Multiplication by 2¹⁶⁺³⁼⁶⁵⁵³⁹ can be easily accomplished by a few shift and add instructions.
- Does not have a full period and has been shown to be flawed in many respects.
- Does not have good randomness properties (Knuth, p 173).
- \triangleright Triplets lie on a total of 15 planes \Rightarrow Unsatisfactory three-distributivity
- \triangleright Like all LCGs with m=2^k, the lower order bits of this generator have a small period. RANDU is no longer used

Washington University in St. Louis

Survey of Survey of RNG's (Cont)

Analog of RANDU for 16-bit microprocessors:

 $x_n = (2^8 + 3)x_{n-1} \mod (2^{15})$

- This generator shares all known problems of RANDU
- \triangleright Period = only a few thousand numbers \Rightarrow not suitable for any serious simulation study
- **□** University of Sheffield Pascal system for Prime Computers:

 $x_n = 16807x_{n-1} \mod 2^{31}$

- \triangleright 16807 \neq 8i \pm 3 \Rightarrow Does not have the maximum possible period of 231-2.
- Used with a shuffle technique in the subroutine UNIFORM of the SAS statistical package

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

Survey of Survey of RNG's (cont)

 \Box SIMULA on UNIVAC uses the following generator:

 $x_n = 5^{13} x_{n-1} \mod 2^{35}$

 \triangleright Has maximum possible period of 2^{33} , Park and Miller (1988) claim that it does not have good randomness properties.

 \Box The UNIX operating system:

 $x_n = (1103515245x_{n-1} + 12345) \text{ mod } 2^{32}$

 \triangleright Like all LCGs with $m=2^k$, the binary representation of x_n 's has a cyclic bit pattern

Seed Selection Seed Selection

- \Box **Multi-stream simulations**: Need more than one random stream
	- \blacktriangleright Single queue \Rightarrow Two streams
		- = Random arrival and random service times
- 1. Do not use zero. Fine for mixed LCGs. But multiplicative LCG or a Tausworthe LCG will stick at zero.
- 2. Avoid even values. For multiplicative LCG with modulus $m=2^k$, the seed should be odd. Better to avoid generators that have too many conditions on seed values or whose performance (period and randomness) depends upon the seed value.
- 3. Do not subdivide one stream.

Seed Selection (Cont) Seed Selection (Cont)

- 4. Do not generate successive seeds: u_1 to generate inter-arrival times, u_2 to generate service time \Rightarrow Strong correlation
- 5. Use non-overlapping streams. Overlap \Rightarrow Correlation, e.g., Same seed \Rightarrow same stream
- 6. Reuse seeds in successive replications.
- 7. Do not use random seeds: Such as the time of day. Can't reproduce. Can't guaranteed non-overlap.
- 8. Select $\{u_0, u_{100,000}, u_{200,000}, \ldots\}$

$$
x_n = a^n x_0 + \frac{c(a^n - 1)}{a - 1} \mod m
$$

Table of Seeds Table of Seeds

$$
x_n = 7^5 x_{n-1} \mod (2^{31} - 1)
$$

Myths About Random-Number Generation Generation

- *1. A complex set of operations leads to random results*. It is better to use simple operations that can be analytically evaluated for randomness.
- *2.*A single test, such as the chi-square test, is sufficient to test *the goodness of a random-number generator.* The sequence 0,1,2,...,*m*-1 will pass the chi-square test with a perfect score, but will fail the run test \Rightarrow Use as many tests as possible.
- *3. Random numbers are unpredictable*. Easy to compute the parameters, *a*, *c*, and *m* from a few numbers \Rightarrow LCGs are unsuitable for cryptographic applications

Myths (Cont) Myths (Cont)

4. Some seeds are better than others. May be true for some.

 $x_n = (9806x_{n-1} + 1) \text{ mod } (2^{17} - 1)$

- \blacktriangleright Works correctly for all seeds except $x_0 = 37911$
- \blacktriangleright Stuck at x_n = 37911 forever
- \blacktriangleright Such generators should be avoided.
- \blacktriangleright Any *nonzero* seed in the valid range should produce an equally good sequence.
- \blacktriangleright For some, the seed should be odd.
- \blacktriangleright Generators whose period or randomness depends upon the seed should not be used, since an unsuspecting user may not remember to follow all the guidelines.

Myths (Cont) Myths (Cont)

5. *Accurate implementation is not important*.

- RNGs must be implemented without any overflow or truncation For example,
	- $x_n = 1103515245x_{n-1} + 12345 \mod 2^{31}$
- In FORTRAN:
- $x_n = (1103515245x_{n-1} + 12345). AND.X'7FFFFF'$
- > The AND operation is used to clear the sign bit
- Straightforward multiplication above will produce overflow.
- *6. Bits of successive words generated by a random-number generator are equally randomly distributed*.
	- If an algorithm produces *l*-bit wide random numbers, the randomness is guaranteed only when all *l* bits are used to form successive random numbers.

Example 26.7 Example 26.7

$$
x_n = (25173x_{n-1}) \mod 2^{16}
$$

Notice that:

- a) Bit 1 (the least significant bit) is always 1.
- b) Bit 2 is always 0.
- c) Bit 3 alternates between 1 and 0, thus, it has a cycle of length 2.
- d) Bit 4 follows a cycle (0110) of length 4.
- e) Bit 5 follows a cycle (11010010) of length 8.

26-48

Example 26.7 (Cont) Example 26.7 (Cont)

- \Box The least significant bit is either always 0 or always 1.
- \Box The *l*th bit has a period at most 2*^l*. (*l*=1 is the least significant bit)
- \Box For all mixed LCGs with *m*=2*^k*:
	- The *l*th bit has a period at most 2*^l*.
	- \triangleright In general, the high-order bits are more randomly distributed than the low-order bits.

 \Rightarrow Better to take the high-order *l* bits than the low-order *l* bits.

- **□** Pseudo-random numbers are used in simulation for repeatability, non-overlapping sequences, long cycle
- \Box It is important to implement PRNGs in integer arithmetic without overflow => Schrage's method
- \Box For multi-stream simulations, it is important to select seeds that result in non-overlapping sequences
- \Box Two or more generators can be combined for longer cycles
- \Box Bits of random numbers may not be random

Washington University in St. Louis $\frac{\text{http://www.cse.wustl.edu/~jain/cse567-13/}}{\text{http://www.cse.wustl.edu/~jain/cse567-13/}}$ ©2013 Raj Jain

26-50