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OverviewOverview



 

Desired properties of a good generator


 

Linear-congruential
 

generators


 

Tausworthe
 

generators


 

Survey of random number generators


 

Seed selection


 

Myths about random number generation
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RandomRandom--Number GenerationNumber Generation



 

Random Number = Uniform (0, 1)


 

Random Variate = Other distributions 
= Function(Random

 
number) 
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A Sample GeneratorA Sample Generator



 

For example,



 

Starting with x0

 

=5:



 

The first 32 numbers obtained by the above procedure 10, 3, 0, 
1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 10, 3, 0, 1, 6, 15, 12, 13, 
2, 11, 8, 9, 14, 7, 4, 5. 



 

By dividing x's
 

by 16:
 0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 

0.8125,  0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 
0.2500, 0.3125, 0.6250,   0.1875, 0.0000, 0.0625, 0.3750, 
0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 
0.8750, 0.4375, 0.2500, 0.3125. 
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TerminologyTerminology


 

Seed
 

= x0



 

Pseudo-Random: Deterministic yet would pass randomness 
tests



 

Fully Random: Not repeatable  


 

Cycle length, Tail, Period
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Properties of a Good GeneratorProperties of a Good Generator



 

It should be efficiently computable.


 

The period should be large.


 

The successive values should be independent and 
uniformly distributed 
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Types of GeneratorsTypes of Generators



 

Linear congruential
 

generators


 

Tausworthe
 

generators


 

Extended Fibonacci generators


 

Combined generators
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LinearLinear--CongruentialCongruential
 

GeneratorsGenerators


 

Discovered by D. H. Lehmer
 

in 1951


 

The residues of successive powers of a number have good 
randomness properties.

Equivalently,

a
 

= multiplier
m

 
= modulus
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LCG (Cont)LCG (Cont)


 

Lehmer's
 

choices: a
 

= 23 and m
 

= 108+1


 

Good for ENIAC, an 8-digit decimal machine. 


 

Generalization:



 

Can be analyzed easily using the theory of 
congruences

  Mixed Linear-Congruential
 

Generators 
or Linear-Congruential

 
Generators (LCG)



 

Mixed = both multiplication by a
 

and addition of b
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Selection of LCG ParametersSelection of LCG Parameters



 

a, b, and m
 

affect the period and autocorrelation 



 

The modulus m
 

should be large.



 

The period can never be more than m.



 

For mod  m computation to be efficient, m
 

should be a power 

of 2  Mod  m
 

can be obtained  by truncation.
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LCG Parameters (Cont)LCG Parameters (Cont)



 

If b
 

is nonzero, the maximum possible period m
 

is 

obtained if and only if:



 

Integers m
 

and b
 

are relatively prime, that is, have no common  
factors other than 1.



 

Every prime number that is a factor of m
 

is also a  factor of a-1.



 

If integer m
 

is a multiple of 4, a-1 should be a  multiple of 4.



 

Notice that all of these conditions are met if m=2k, a = 4c + 1, 

and b
 

is odd. Here, c, b, and k
 

are positive integers.
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Period vs. AutocorrelationPeriod vs. Autocorrelation


 

A generator that has the maximum possible period is called a 
full-period generator. 



 

Lower autocorrelations between successive numbers are 
preferable. 



 

Both generators have the same full period, but the first one has
 a correlation of 0.25 between xn-1

 

and xn

 

,  whereas the second 
one has a negligible correlation of less than 2-18
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Multiplicative LCGMultiplicative LCG


 

Multiplicative LCG: b=0



 

Two types:
m = 2k

m ≠ 2k
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Multiplicative LCG with m=2Multiplicative LCG with m=2kk



 

m = 2k

 
 trivial division

  Maximum possible period 2k-2



 

Period achieved if multiplier a is of the form 8i± 3, 
and the initial seed is an odd integer



 

One-fourth the maximum possible may not be too 
small



 

Low order bits of random numbers obtained using  
multiplicative LCG's

 
with m=2k

 
have a cyclic pattern
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Example 26.1aExample 26.1a



 

Using a seed of x0

 

=1:
5,  25,  29,  17,  21,  9,  13,  1,  5,…
Period = 8 = 32/4


 

With   x0

 

= 2, the sequence is:  10,  18,  26,  2,  10,…
Here, the period is only 4.  
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Example 26.1bExample 26.1b



 

Multiplier not of the form 8i ±
 

3:



 

Using a seed of x0 = 1, we get the sequence: 
7, 17,  23,  1,  7,…



 

The period is only 4
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Multiplicative LCG with mMultiplicative LCG with m≠≠
 

22kk



 

Modulus m = prime number

With a proper multiplier a, period = m-1

Maximum possible period = m

 If and only if the multiplier a is a  primitive root
 

of the modulus 

m 

 a
 

is a primitive root of m
 

if and only if an

 

mod  m
 

≠1 for n = 1, 

2, …, m-2.
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Example 26.2Example 26.2



 

Starting with a seed of x0

 

=1:
1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 
4, 12, 5, 15, 14, 11, 2, 6,  18, 23, 7, 21, 1, …
The period is 30
 3 is a primitive root of 31 



 

With a multiplier of a = 5: 1, 5, 25, 1,…
The period is only 3  5 is not a primitive root of 31



 

Primitive roots of 31= 3, 11, 12, 13, 17, 21, 22, and 24.
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Schrage's MethodSchrage's Method


 

PRN computation assumes: 


 

No round-off errors, integer arithmetic and no overflows
  Can't do it in BASIC



 

Product a xn-1

 

> Largest integer
 

 Overflow


 

Identity: 
Where:
And:
Here, q = m div  a, r = m mod  a

 `A div  B' = dividing A by B and truncating the result.


 

For all x's
 

in the range 1, 2, …, m-1, computing g(x) involves 
numbers less than m-1.



 

If r < q,  h(x) is either 0 or 1, and it can be inferred from g(x);
h(x) is 1 if and only if g(x) is negative. 
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Example 26.3Example 26.3



 

231-1 = 2147483647 = prime number 

 75

 

= 16807 is one of its 534,600,000 primitive roots

 The product a xn-1

 

can be as large as  16807×
 

2147483647 
≈

 
1.03×

 
245.



 

Need 46-bit integers 



 

For a correct implementation, x0 = 1
 

 x10000

 

= 1,043,618,065.
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Generator Using Integer ArithmeticGenerator Using Integer Arithmetic

WHILE x_new < 0 DO x_new := x_new + m;

WHILE x_new >= m DO x_new := x_new - m;

x := x_new;
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Generator Using Real ArithmeticGenerator Using Real Arithmetic
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Example 26.3 (Cont)Example 26.3 (Cont)
a 16807
m 2147483647
q 127773
r 2836
i x
0 1
10 2007237709
20 143542612
30 1505795335
40 784558821
50 937186357
60 130060903
70 158374933
80 1654001669
90 1908194298
100 892053144

10000 1043618065
20000 673160914
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Homework 26Homework 26


 

Exercise 26.5 Updated: 
Implement the following LCG using Schrage's method 
to avoid overflow:

Using a seed of x0

 

=1, determine x1

 

, x10

 

, x100

 

, x1000

 

,
 

x10000

 

,
 x20000

 

. 

Note: In Excel: 
x_div_q

 
= x%q

r*(x%q) ≠
 

r*x%q
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TauswortheTausworthe
 

GeneratorsGenerators


 

Need long random numbers for cryptographic applications


 

Generate random sequence of binary digits (0 or 1)


 

Divide the sequence into strings of desired length


 

Proposed by Tausworthe
 

(1965)

Where ci

 

and bi

 

are binary variables with values of 0 or 1, and ⊕
 is the exclusive-or (mod 2 addition) operation.



 

Uses the last q
 

bits of the sequence 
 autoregressive sequence of order  q

 
or AR(q).



 

An AR(q) generator can have a maximum period of 2q-1. 
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TauswortheTausworthe
 

Generators (Cont)Generators (Cont)


 

D = delay operator such that



 

Characteristic polynomial:



 

The period is the  smallest positive integer n
 

for which xn-1 is 
divisible by the characteristic  polynomial. 



 

The maximum possible period with a polynomial of order q
 

is 
2q-1. The polynomials that give this period are called primitive 
polynomials.
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Example 26.4Example 26.4
x7+x3+1 



 

Using D
 

operator in place of x:

Or:



 

Using the exclusive-or operator

Or:



 

Substituting n-7 for n:
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Example 26.4 (Cont)Example 26.4 (Cont)


 

Starting with b0 = b1 = = b6 = 1:



 

The complete sequence is:
1111111 0000111 0111100 1011001 0010000 0010001  
0011000 1011101  0110110  0000110 0110101 0011100 
1111011 0100001 0101011 1110100 1010001  1011100  
0111111 1000011 1000000.   



 

Period = 127 or 27-1 bits 
 The polynomial x7+x3+1 is a primitive polynomial. 
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Linear Feedback Shift RegisterLinear Feedback Shift Register
x5+x3+1

 
 bn

 

= bn-2⊕
 

bn-5


 

This can be easily implemented using shift registers:



 

In general:
 

AND gates are not required if ci

 

’s
 

are known

Outputbn bn-1 bn-2 bn-3 bn-4 bn-5

Outputbn bn-1 bn-2 bn-qbn-q

 

+1

cn-2cn-1

AND

cn-q

 

+ 1
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Generating U(0,1)Generating U(0,1)


 

Divide the sequence into successive groups of s bits and use the
first l

 
bits of each group as a binary fraction:

Or equivalently:

Here, s
 

is a constant greater than or equal to l
 

and is  relatively 
prime to 2q-1. 

s≥
 

l
 

 xn

 

and xj

 

for n≠
 

j
 

have no bits in common



 

Relative prime-ness
 

guarantees a full period 2q-1 for xn

 

.



26-31
©2013 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/

Example 26.5Example 26.5

bn

 

= bn-4⊕
 

bn-7


 

The period 27-1=127


 

l=8, s=8:
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Disadvantages of Disadvantages of TauswortheTausworthe
 

GeneratorsGenerators



 

The sequence may produce good test results over the complete 
cycle, it may not have satisfactory local behavior. 



 

It performed negatively on the runs up and down test. 


 

Although the first-order serial correlation is almost zero, it is 
suspected that some primitive polynomials may give poor high-

 order correlations. 


 

Not all primitive polynomials are equally good.
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Combined GeneratorsCombined Generators
1.

 
Adding random numbers obtained by two or more generators.

wn

 

=(xn

 

+yn

 

) mod  m
For example, L'Ecuyer

 
(1986):

This would produce:

Period = 2.3×
 

1018
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Combined Generators (Cont)Combined Generators (Cont)
Another Example: For 16-bit computers:

Use:

This generator has a period of 8.1 ×
 

1012. 
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Combined Generators (Cont)Combined Generators (Cont)
2. Exclusive-or random numbers obtained by two or more 

generators. 

3. Shuffle. Use one sequence  as an index to decide which of 
several numbers generated by the second sequence should be 
returned.
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Combined Generators (Cont)Combined Generators (Cont)


 

Algorithm M:

a)
 

Fill an array of size, say, 100.
b)

 
Generate a new yn

 

(between 0 and m-1)
c)

 
Index i=1+100 yn

 

/m
d)

 
ith

 
element of the array is returned as the next random number

e)
 

A new value of xn

 

is generated and stored in the ith
 

location
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Survey of RandomSurvey of Random--Number GeneratorsNumber Generators


 

A currently popular multiplicative LCG is:



 

Used in:


 

SIMPL/I system (IBM 1972), 


 

APL system from IBM (Katzan
 

1971),


 

PRIMOS operating system from Prime Computer 
(1984), and 



 

Scientific library from IMSL (1980)


 

231-1 is a prime number and 75

 

is a primitive root of it 
 Full period of 231-2. 



 

This generator has been extensively analyzed and shown to be 
good.



 

Its low-order bits are uniformly distributed.
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Survey of Survey of RNGRNG’’ss
 

(Cont)(Cont)



 

Fishman and Moore (1986)'s exhaustive search of  
m=231-1:



 

SIMSCRIPT II.5 and in DEC-20 FORTRAN:
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Survey of Survey of RNGRNG’’ss
 

(Cont)(Cont)



 

``RANDU'' (IBM 1968): Very popular in the 1960s:



 

Modulus and the multiplier were selected primarily to 
facilitate easy computation. 



 

Multiplication by 216+3=65539 can be easily accomplished 
by a few shift and add  instructions. 



 

Does not have a full period and has been shown to be 
flawed in many respects. 



 

Does not have good randomness properties (Knuth, p 173).


 

Triplets lie on a total of 15 planes 
 Unsatisfactory three-distributivity



 

Like all LCGs
 

with m=2k, the lower order bits of this 
generator have a small period.  RANDU is no longer used
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Survey of Survey of RNGRNG’’ss
 

(Cont)(Cont)


 

Analog of RANDU for 16-bit microprocessors:



 

This generator shares all known problems  of RANDU


 

Period = only a few thousand numbers 
 not suitable for any serious simulation study



 

University of Sheffield Pascal system for Prime Computers:



 

16807 ≠
 

8i±
 

3  Does not have the maximum possible 
period of  231-2.   



 

Used with a shuffle technique in the subroutine UNIFORM 
of the SAS statistical package 
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Survey of Survey of RNGRNG’’ss
 

(cont)(cont)


 

SIMULA on UNIVAC uses the following generator:



 

Has maximum possible period of 233,  Park and Miller 
(1988) claim that it does not have good randomness 
properties. 



 

The UNIX operating system:



 

Like all LCGs
 

with m=2k, the binary representation of xn

 

's
 has a cyclic bit pattern
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Seed SelectionSeed Selection


 

Multi-stream simulations: Need more than one random 
stream


 

Single queue  Two streams 
= Random arrival and random  service times

1.
 

Do not use zero.  Fine for mixed LCGs. 
But multiplicative LCG or a Tausworthe

 
LCG will stick at 

zero. 
2.

 
Avoid even values. For  multiplicative LCG with modulus 
m=2k, the seed should be odd.  Better to avoid generators that 
have too many conditions on seed values or whose 
performance (period and randomness)  depends upon the seed 
value. 

3.
 

Do not subdivide one stream.
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Seed Selection (Cont)Seed Selection (Cont)
4.

 
Do not generate successive seeds: u1

 

to generate inter-arrival 
times,  u2

 

to generate service time  Strong correlation 
5.

 
Use non-overlapping streams. 
Overlap  Correlation, e.g., Same seed  same stream 

6.
 

Reuse seeds in successive replications. 
7.

 
Do not use random seeds: Such as the time of day. 
Can't reproduce. Can't guaranteed non-overlap. 

8.
 

Select
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Table of SeedsTable of Seeds
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Myths About RandomMyths About Random--Number Number 
GenerationGeneration
1.

 
A complex set of operations leads to random results.  It is 
better to use simple operations that can be analytically 
evaluated for randomness.

2.
 

A single test, such as the chi-square test, is sufficient to test 
the goodness of a random-number generator.

 
The sequence 

0,1,2,...,m-1  will pass the chi-square test with a perfect score,  
but will fail the run test  Use as many tests as possible.  

3.
 

Random numbers are unpredictable.  Easy to compute the 
parameters, a, c, and m

 
from a few numbers  LCGs

 
are 

unsuitable for cryptographic applications  
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Myths (Cont)Myths (Cont)
4.

 
Some seeds are better than others. May be true for some.



 

Works correctly for all seeds except x0 = 37911


 

Stuck at xn

 

= 37911 forever


 

Such generators should be avoided.   


 

Any nonzero
 

seed in the valid range should produce an 
equally good sequence.   



 

For some, the seed should be odd.  


 

Generators whose  period or randomness depends upon the 
seed should not be used, since an unsuspecting user may 
not remember to follow all the guidelines.  
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Myths (Cont)Myths (Cont)
5. Accurate implementation is not important. 



 

RNGs
 

must be implemented without any overflow or 
truncation For example,



 

In FORTRAN:



 

The AND operation is used to clear the sign bit


 

Straightforward multiplication above will produce overflow.
6. Bits of successive words generated by a random-number 

generator are equally randomly distributed. 


 

If an algorithm produces l-bit wide random numbers, the 
randomness is guaranteed only when all l

 
bits are used to 

form successive random numbers. 
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Example 26.7Example 26.7

Notice that:
a)

 
Bit 1 (the least 
significant bit) is always 
1.

b)
 

Bit 2 is always 0.
c)

 
Bit 3 alternates between 
1 and 0, thus, it has a 
cycle of length 2.

d)
 

Bit 4 follows a cycle 
(0110) of length 4.

e)
 

Bit 5 follows a cycle 
(11010010) of length 8.
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Example 26.7 (Cont)Example 26.7 (Cont)


 

The least significant bit is either always 0 or always 1. 


 

The lth
 

bit has a period at most 2l. (l=1 is the least significant 
bit)  



 

For all mixed LCGs
 

with m=2k: 


 

The lth
 

bit has a period at most 2l.   


 

In general, the high-order bits are more randomly 
distributed than the low-order bits. 
 Better to take the  high-order l bits than the low-order l 
bits.
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SummarySummary



 

Pseudo-random numbers are used in simulation for 
repeatability, non-overlapping sequences, long cycle



 

It is important to implement PRNGs
 

in integer arithmetic 
without overflow => Schrage’s method



 

For multi-stream simulations, it is important to select seeds that 
result in non-overlapping sequences



 

Two or more generators can be combined for longer cycles


 

Bits of random numbers may not be random
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