General Full Factorial Designs With *k* **Factors**

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-13/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

©2013 Raj Jain

Model

- Analysis of a General Design
- Informal Methods
 - > Observation Method
 - Ranking Method
 - > Range Method

General Full Factorial Designs With k Factors

 \Box Model: k factors \Rightarrow 2^k-1 effects k main effects $\begin{pmatrix} k \\ 2 \end{pmatrix}$ two factor interactions, $\begin{pmatrix} k \\ 3 \end{pmatrix}$ three factor interactions, and so on. Example: 3 factors A, B, C: $y_{ijkl} = \mu + \alpha_i + \beta_j + \xi_k + \gamma_{ABij} + \gamma_{ACik} + \gamma_{BCjk} +$ $+\gamma_{ABCijk} + e_{ijkl}$ $i = 1, \dots, a; \quad j = 1, \dots, b; \quad k = 1, \dots, c; \quad l = 1, \dots, r;$ http://www.cse.wustl.edu/~jain/cse567-13/ Washington University in St. Louis ©2013 Rai Jain 23 - 3

Model Parameters

 y_{ijkl} = Response in the lth replication with factors A, B, and C at levels i, j, and k, respectively.

$$\mu$$
 = Mean response

- α_i = Effect of factor A at level i
- β_j = Effect of factor B at level j
- ξ_k = Effect of factor C at level k
- γ_{ABij} = Interaction between A and B at levels i and j.
- γ_{ABCijk} = Interaction between A, B, C at levels i, j, and k. and so on
- □ Analysis: Similar to that with two factors

$$\mu = \bar{y}_{\dots}$$

$$\alpha_i = \bar{y}_{i\dots} - \bar{y}_{\dots}$$

The sums of squares, degrees of freedom, and F-test also extend as expected. }
Washington University in St. Louis
<u>http://www.cse.wustl.edu/~jain/cse567-13/</u> ©2013 Raj Jain

Case Study 23.1: Paging Process

Factors and Levels for Page Swap Study										
Symbol	Factor	Levels								
		1	2	3						
A	Page Replacement Algorithm	LRUV	FIFO	RAND						
D	Deck Arrangement	GROUP	FREQY	ALPHA						
Р	Problem Program	Small	Medium	Large						
M	Memory Pages	24P	20P	16P						

□ Total 81 experiments.

Washington University in St. Louis

Case Study 23.1 (Cont)

□ Total Number of Page Swaps

Algor-	Prog-	GROUP				FREQ	Y	ALPHA			
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P	
LRUV	Small	32	48	538	52	244	998	59	536	1348	
	Medium	53	81	1901	112	776	3621	121	1879	4639	
	Large	142	197	5689	262	2625	10012	980	5698	12880	
FIFO	Small	49	67	789	79	390	1373	85	814	1693	
	Medium	100	134	3152	164	1255	4912	206	3394	5838	
	Large	233	350	9100	458	3688	13531	1633	10022	17117	
RAND	Small	62	100	1103	111	480	1782	111	839	2190	
	Medium	96	245	2807	237	1502	6007	286	3092	7654	
	Large	265	2012	12429	517	4870	18602	1728	8834	23134	

\Box y_{max}/y_{min} = 23134/32 = 723 \Rightarrow log transformation

Washington University in St. Louis

Case Study 23.1 (Cont)

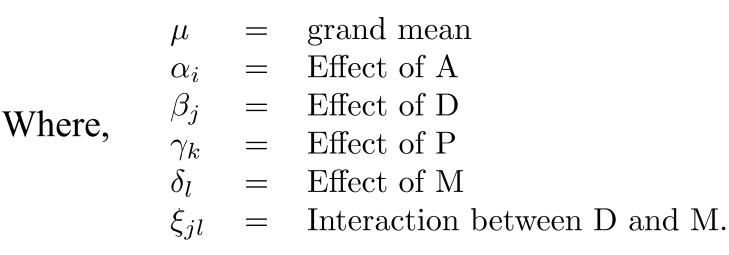
□ Transformed Data For the Paging Study

Algor-	Prog-	(GROUP			FREQ	Y	ALPHA			
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P	
LRUV	Small	1.51	1.68	2.73	1.72	2.39	3.00	1.77	2.73	3.13	
	Medium	1.72	1.91	3.28	2.05	2.89	3.56	2.08	3.27	3.67	
	Large	2.15	2.29	3.76	2.42	3.42	4.00	2.99	3.76	4.11	
FIFO	Small	1.69	1.83	2.90	1.90	2.59	3.14	1.93	2.91	3.23	
	Medium	2.00	2.13	3.50	2.21	3.10	3.69	2.31	3.53	3.77	
	Large	2.37	2.54	3.96	2.66	3.57	4.13	3.21	4.00	4.23	
RAND	Small	1.79	2.00	3.04	2.05	2.68	3.25	2.05	2.92	3.34	
	Medium	1.98	2.39	3.58	2.37	3.18	3.78	2.46	3.49	3.88	
	Large	2.42	2.30	4.09	2.71	3.69	4.27	3.24	3.95	4.36	

Washington University in St. Louis

Case Study 23.1 (Cont)												
□ Effects:	$lpha_1$ =	$= y_{1} - y_{2}$	$y_{} = 2.$	74 - 2.9	00 = -0	.16						
<u>Main Effects</u> Level												
		Factor	1	2	3							
		A	-0.16	0.02	0.14							
		D	-0.36	0.07	0.29							
		Р	-0.47	-0.02	0.49							
D Also		М	-0.69	-0.01	0.70							

- Also
 - Six two-factor interactions,
 - Four three-factor interactions, and
 - > One four-factor interaction.


Case	Study	23.1:	ANO	VA	Table
------	-------	-------	-----	----	-------

nentSquaresSquarey 730.01 81 \bar{y} 681.21 1y- \bar{y} 48.80 100% 80 Main Effects 45.80 93.85% 8 5.7 A 1.30 2D 6.10 2P 12.30 2M 26.20 2First-order Interactions 2.40 4.91% AD 0.07 4AP 0.02 4AM 0.03 4DP 0.15 4DM 1.96 4PM 0.14 4Second-order Interactions 0.48 0.98% 32 ADP 0.05 8 ADM 0.13 8 ADM 0.13 8 ADM 0.13 8 APM 0.04 8 DPM 0.26 8 Third-order Interaction 0.07 0.14% Interaction 0.07 0.14% 16 ODM 0.26 8 Third-order Interaction 0.07 0.14% BPM 0.26 8 Third-order Interaction 0.07 0.14% Mashington University in St. Louis	Compo-	Sum of	%Variation	DF	Mean
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nent	Squares			Square
y- \bar{y} 48.80100%80Main Effects45.8093.85%85.7A1.302D6.102P12.302M26.202First-order Interactions2.404.91%24AD0.074AP0.024AM0.034DP0.154DM1.964PM0.144Second-order Interactions0.480.98%320.015ADP0.058ADM0.138APM0.048DPM0.2688Third-order Interaction0.070.14%160.004(ADPM)0.2687160.004160.004	y	730.01		81	
Main Effects 45.80 93.85% 8 5.7 A 1.30 2 D 6.10 2 P 12.30 2 M 26.20 2 First-order Interactions 2.40 4.91% AD 0.07 4 AD 0.07 4 AP 0.02 4 AM 0.03 4 DP 0.15 4 DM 1.96 4 PM 0.14 4 Second-order Interactions 0.48 0.98% 32 ADP 0.05 8 ADM 0.13 8 APM 0.04 8 DPM 0.26 8 Third-order Interaction 0.07 0.14% 16 0.004 (ADPM) 0.26	$ar{y}$	681.21		1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	у- <i>ӯ</i>	48.80	100%	80	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Main Effects	45.80	93.85%	8	5.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	А	1.30		2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	6.10		2	
First-order Interactions 2.40 4.91% 24 0.1 AD 0.07 4 AP 0.02 4 AM 0.03 4 DP 0.15 4 DM 1.96 4 PM 0.14 4 Second-order Interactions 0.48 0.98% 32 0.015 ADP 0.05 8 ADM 0.13 8 ADM 0.04 8 DPM 0.26 8 Third-order Interaction 0.07 0.14% 16 0.004 (ADPM) 0.26 8	Р	12.30		2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Μ			2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.91%	24	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4	
$\begin{array}{c cccccc} PM & 0.14 & 4 \\ Second-order Interactions & 0.48 & 0.98\% & 32 & 0.015 \\ ADP & 0.05 & 8 \\ ADM & 0.13 & 8 \\ APM & 0.04 & 8 \\ DPM & 0.26 & 8 \\ Third-order Interaction & 0.07 & 0.14\% & 16 & 0.004 \\ (ADPM) & & & & & & & & & & & & & & & & & & &$		0.15		4	
$\begin{array}{c cccccc} Second-order Interactions & 0.48 & 0.98\% & 32 & 0.015 \\ ADP & 0.05 & 8 & & \\ ADM & 0.13 & 8 & & \\ APM & 0.04 & 8 & & \\ DPM & 0.26 & 8 & & \\ Third-order Interaction & 0.07 & 0.14\% & 16 & 0.004 & \\ (ADPM) & & & & \\ \end{array}$				4	
ADP 0.05 8 ADM 0.13 8 APM 0.04 8 DPM 0.26 8 Third-order Interaction 0.07 0.14% 16 0.004 (ADPM) 6 0.004 0.004 0.004					
ADM 0.13 8 APM 0.04 8 DPM 0.26 8 Third-order Interaction 0.07 0.14% 16 0.004 (ADPM)			0.98%	32	0.015
APM 0.04 8 DPM 0.26 8 Third-order Interaction 0.07 0.14% 16 0.004 (ADPM) (ADPM) (ADPM) (ADPM) (ADPM)				8	
DPM 0.26 8 Third-order Interaction 0.07 0.14% 16 0.004 (ADPM) (ADPM) (ADPM) (ADPM) (ADPM) (ADPM)					
Third-order Interaction 0.07 0.14% 16 0.004 (ADPM)					
(ADPM)					
		0.07	0.14%	16	0.004
Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse567-13/</u>	(ADPM)				
	Washington University in St. Louis	http://www.cse.	wustl.edu/~jain/cs	e567-13	<u>3/</u>

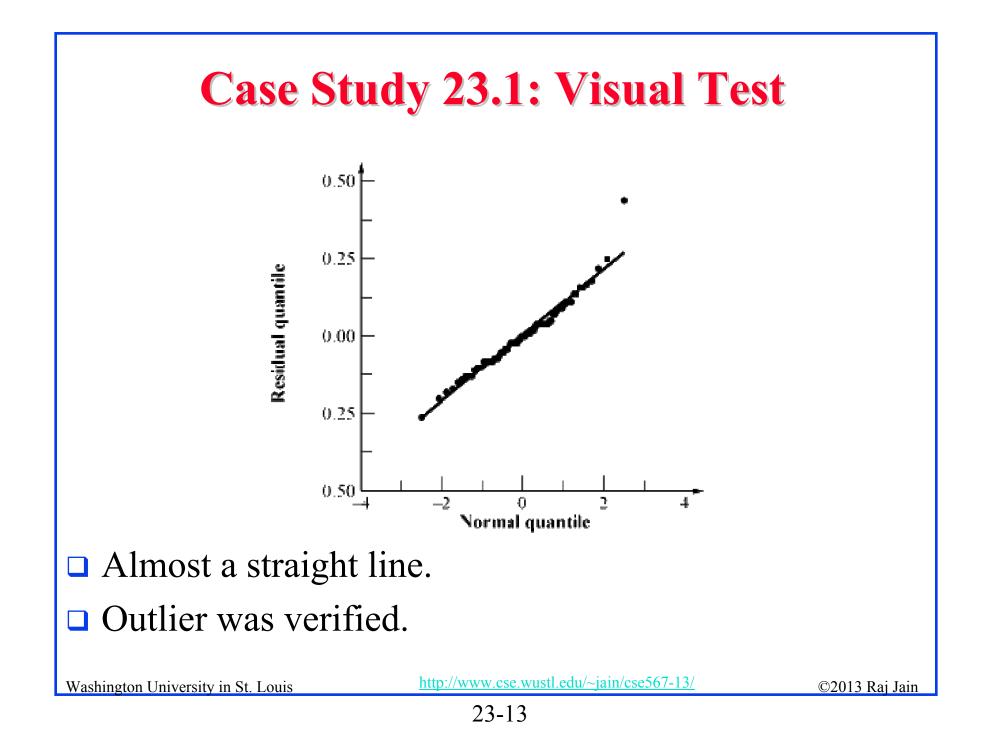
Case Study 23.1: Simplified model

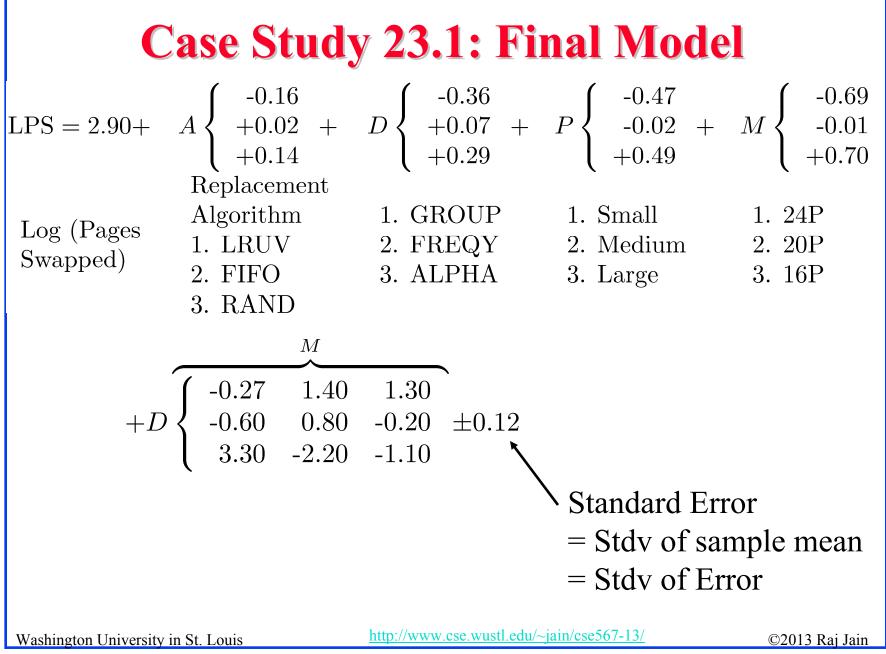
□ Most interactions except DM are small.

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \xi_{jl}$$

Case Study 23.1: Simplified Model (Cont)

Interactions Between Deck Arrangement and Memory Pages


			М	
		1	2	3
D	1	0.11	-0.30	0.19
	2	-0.05	0.09	-0.04
	3	-0.06	0.21	-0.15


Washington University in St. Louis

Case Study 23.1: Error Computation

Algor-	Prog-	GROUP]	FREQY	7	ALPHA			
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P	
LRUV	Small	0.18	0.08	-0.07	0.11	-0.04	-0.02	-0.05	-0.04	0.01	
	Medium	-0.05	-0.13	0.04	0.01	0.02	0.10	-0.18	0.07	0.11	
	Large	-0.13	-0.26	0.01	-0.14	0.04	0.03	0.22	0.04	0.04	
FIFO	Small	0.17	0.04	0.09	0.11	-0.02	-0.07	-0.08	-0.04	-0.08	
	Medium	0.05	-0.10	0.07	-0.02	0.04	0.05	-0.13	0.14	0.02	
	Large	-0.10	-0.20	0.02	-0.00	0.00	-0.03	0.25	0.09	-0.02	
RAND	Small	0.16	0.09	-0.06	0.14	-0.05	-0.07	-0.08	-0.08	-0.08	
	Medium	-0.10	0.04	0.04	-0.02	0.00	0.01	-0.11	-0.02	-0.02	
	Large	-0.17	0.44	0.04	-0.15	0.00	-0.01	0.16	-0.08	-0.01	

Washington University in St. Louis

Observation Method

- □ To find the best combination.
- Example: Scheduler Design
- □ Three Classes of Jobs:
 - > Word processing
 - > Interactive data processing
 - > Background data processing
- □ Five Factors 2⁵⁻¹ design

Exar	nple	23.1	l: M	easu	ired	Thro	ugh	puts
No.	A	B	C	D	E	$\overline{T_W}$	$\frac{}{T_I}$	T_B
1	-1	-1	-1	-1	1	15.0	25.0	15.2
2	1	-1	-1	-1	-1	11.0	41.0	3.0
3	-1	1	-1	-1	-1	25.0	36.0	21.0
4	1	1	-1	-1	1	10.0	15.7	8.6
5	-1	-1	1	-1	-1	14.0	63.9	7.5
6	1	-1	1	-1	1	10.0	13.2	7.5
7	-1	$\begin{bmatrix} 1 \end{bmatrix}$	$\boxed{1}$	-1	$\begin{bmatrix} 1 \end{bmatrix}$	28.0	36.3	20.2
8	1	1	1	-1	-1	11.0	23.0	3.0
9	-1	-1	-1	1	-1	14.0	66.1	6.4
10	1	-1	-1	1	1	10.0	9.1	8.4
11	-1	1	-1	1	1	27.0	34.6	15.7
12	1	1	-1	1	-1	11.0	23.0	3.0
13	-1	-1	1	1	1	14.0	26.0	12.0
14	1	-1	1	1	-1	11.0	38.0	2.0
15	-1	1	1	1	-1	25.0	35.0	17.2
16	1	1	1	1	1	11.0	22.0	2.0
ashington Univer	sity in St. Lou	is	<u>http</u>	://www.cse.w	vustl.edu/~jai	n/cse567-13/		©2013 Raj J

Example 23.1: Conclusions

To get high throughput for word processing jobs,:

- 1. There should not be any preemption (A=-1)
- 2. The time slice should be large (B=1)
- 3. The fairness should be on (E=1)
- 4. The settings for queue assignment and re-queueing do not matter.

Ranking Method

□ Sort the experiments.

	No.	А	В	\mathbf{C}	D	${ m E}$	T_W	T_I	T_B
	7	-1	1	1	-1	1	28.0	36.3	20.2
	11	-1	1	-1	1	1	27.0	34.6	15.7
	15	-1	1	1	1	-1	25.0	35.0	17.2
	3	-1	1	-1	-1	-1	25.0	36.0	21.0
	1	-1	-1	-1	-1	1	15.0	25.0	15.2
	5	-1	-1	1	-1	-1	14.0	63.9	7.5
	9	-1	-1	-1	1	-1	14.0	66.1	6.4
	13	-1	-1	1	1	1	14.0	26.0	12.0
	2	1	-1	-1	-1	-1	11.0	41.0	3.0
	8	1	1	1	-1	-1	11.0	23.0	3.0
	12	1	1	-1	1	-1	11.0	23.0	3.0
	14	1	-1	1	1	-1	11.0	38.0	2.0
	16	1	1	1	1	1	11.0	22.0	2.0
	6	1	-1	1	-1	1	10.0	13.2	7.5
	4	1	1	-1	-1	1	10.0	15.7	8.6
	10	1	-1	-1	1	1	10.0	9.1	8.4
Washington Universi	ity in St. Lou	is		http://ww	ww.cse.	wustl.edu	/~jain/cse	567-13/	
					a a a a	<u> </u>			

Example 23.2: Conclusions

- 1. A=-1 (no preemption) is good for word processing jobs and also that A=1 is bad.
- 2. B=1 (large time slice) is good for such jobs. No strong negative comment can be made about B=-1.
- 3. Given a choice C should be chosen at 1, that is, there should be two queues.
- 4. The effect of E is not clear.
- 5. If top rows chosen, then E=1 is a good choice.

Range Method

- □ Range = Maximum-Minimum
- □ Factors with large range are important.

		Level		Range of
Factor	1	2	3	of Averages
Replacement Algorithm	2056	2986	3781	1725
Deck Arrangement	1584	2913	4326	2742
Problem Program	592	2047	6185	5593
Memory Size	305	2006	6512	6207

- □ Memory size is the most influential factor.
- Problem program, deck arrangement, and replacement algorithm are next in order.

- □ A general k factor design can have k main effects, two factor interactions, three factor interactions, and so on.
- □ Information Methods:
 - > Observation: Find the highest or lowest response
 - Ranking: Sort all responses
 - Range: Largest smallest average response

Homework 23 □ Analyze the following results using observation and ranking methods. No. Α В С \overline{T} D E -1 -1 -1 1 13.2 -1 1 -1 21 -1 -1 -1 4.0-1 3 1 -1 -1 -1 22.04 1 1 -1 -1 1 9.6 -1 1 5 -1 -1 -1 6.51 -1 1 8.5 6 -1 1 $\overline{7}$ -1 1 1 -1 1 21.2 8 1 1 1 -1 -1 2.09 -1 -1 -1 7.41 -1 1 -1 10 -1 1 1 7.411 -1 1 1 14.7 -1 1 12 1 1 4.0-1 1 -1 13 -1 1 -1 1 1 13.014 1 -1 1 1 -1 3.015-1 1 1 1 -1 18.2163.01 1 1 1 1 http://www.cse.wustl.edu/~jain/cse567-13/ Washington University in St. Louis ©2013 Raj Jain 23-22