Full Factorial Design Full Factorial Design Two Factors without Replications without Replications

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-13/

- \Box Estimating Experimental Errors
- \Box Allocation of Variation
- **D** ANOVA Table
- Visual Tests
- **Q** Confidence Intervals For Effects
- Multiplicative Models
- **Nissing Observations**

Two Factors Full Factorial Design Two Factors Full Factorial Design

- \Box Used when there are two parameters that are carefully controlled
- **Examples:**
	- To compare several processors using several workloads.
	- To determining two configuration parameters, such as cache and memory sizes
- **□** Assumes that the factors are categorical. For quantitative factors, use a regression model.
- A full factorial design with two factors *A* and *B* having *^a* and *b* levels requires *ab* experiments.
- **□** First consider the case where each experiment is conducted only once.

Model

$$
y_{ij} = \mu + \alpha_j + \beta_i + e_{ij}
$$

- Observation with A at level j y_{ij} \equiv and B at level i
- mean response μ \equiv
- $=$ effect of factor A at level j α_j
- $=$ effect of factor ${\bf B}$ at level ${\bf i}$ β_i
- e_{ij} error term \equiv

Computation of Effects Computation of Effects

Averaging the jth column produces:

$$
\bar{y}_{\cdot j} = \mu + \alpha_j + \frac{1}{b} \sum_i \beta_i + \frac{1}{b} \sum_i e_{ij}
$$

 \Box Since the last two terms are zero, we have:

 $\bar{y}_{\cdot j} = \mu + \alpha_j$

 \Box Similarly, averaging along rows produces:

$$
\bar{y}_{i.} = \mu + \beta_i
$$

□ Averaging all observations produces

$$
\bar{y}_{..}=\mu
$$

 \Box Model parameters estimates are:

Washington University in St. Louis ©2013 Raj Jain http://www.cse.wustl.edu/~jain/cse567-13/ Easily computed using a tabular arrangement.

Example 21.1: Cache Comparison Example 21.1: Cache Comparison

Example 21.1: Computation of Effects

- \Box An average workload on an average processor requires 72.2 ms of processor time.
- \Box The time with two caches is 21.2 ms lower than that on an average processor
- \Box The time with one cache is 20.2 ms lower than that on an average processor.
- \Box The time without a cache is 41.4 ms higher than the average

Washington University in St. Louis $\frac{\text{http://www.cse.wustl.edu/~jain/cse567-13/}}{\text{http://www.cse.wustl.edu/~jain/cse567-13/}}$ ©2013 Raj Jain

Example 21.1 (Cont) Example 21.1 (Cont)

- \Box Two-cache - One-cache $= 1$ ms.
- \Box One-cache - No-cache $= 41.4 + 20.2$ or 61.6 ms.
- \Box The workloads also affect the processor time required.
- \Box The ASM workload takes 0.5 ms less than the average.
- \Box TECO takes 8.8 ms higher than the average.

Estimating Experimental Errors Estimating Experimental Errors

 \Box Estimated response:

$$
\hat{y}_{ij} = \mu + \alpha_j + \beta_i
$$

 \Box Experimental error:

$$
e_{ij} = y_{ij} - \hat{y}_{ij} = y_{ij} - \mu - \alpha_j - \beta_i
$$

 \Box Sum of squared errors (SSE):

$$
SSE = \sum_{i=1}^{b} \sum_{j=1}^{a} e_{ij}^2
$$

 Example: The estimated processor time is: \Box $\hat{y}_{11} = \mu + \alpha_1 + \beta_1 = 72.2 - 21.2 - 0.5 = 50.5$ Error = Measured-Estimated = $54-50.5 = 3.5$ \Box

Example 21.2: Error Computation Example 21.2: Error Computation

The sum of squared errors is:

 $SSE = (3.5)^{2} + (0.2)^{2} + \cdots + (-2.4)^{2} = 2368.00$

Example 21.2: Allocation of Variation Example 21.2: Allocation of Variation

$$
y_{ij} = \mu + \alpha_j + \beta_i + e_{ij}
$$

□ Squaring the model equation:

 $\sum_{ij} y_{ij}^2$ = $ab\mu^2$ + $b\sum_{j} \alpha_j^2$ + $a\sum_{i} \beta_i^2$ + $\sum_{ij} e_{ij}^2$
SSY = SS0 + SSA + SSB + SSE $SST = SSY - SSO = SSA + SSB + SSE$ $13402.41 = 91595 - 78192.59 = 12857.20 + 308.40 + 236.80$ $= 95.9\% + 2.3\% + 1.8\%$ $100\% =$

 \Box High percent variation explained \Rightarrow Cache choice <u>important</u> in processor design.

Analysis of Variance Analysis of Variance

Q Degrees of freedoms:

 $\begin{array}{rclcrcl} \mathrm{SSY} & = & \mathrm{SS0} & + & \mathrm{SSA} & + & \mathrm{SSB} & + & \mathrm{SSE} \\ ab & = & 1 & + & (a-1) & + & (b-1) & + & (a-1)(b-1) \end{array}$

O Mean squares:

ANOVA Table ANOVA Table

Example 21.3: Cache Comparison Example 21.3: Cache Comparison

- \Box Cache choice significant.
- \Box Workloads insignificant

21-15

Confidence Intervals For Effects Confidence Intervals For Effects

Example 21.5: Cache Comparison Example 21.5: Cache Comparison

 \Box Standard deviation of errors:

$$
s_e = \sqrt{\text{MSE}} = \sqrt{29.60} = 5.4
$$

 Standard deviation of the grand mean: \Box $s_{\mu} = s_e / \sqrt{ab} = 5.4 / \sqrt{15} = 1.4$

 \Box Standard deviation of α 's:

$$
s_{\alpha_j} = s_e \sqrt{(a-1)/ab} = 5.4 \sqrt{\frac{2}{15}} = 2.0
$$

 \Box Standard deviation of β_i 's:

$$
s_{\beta_i} = s_e \sqrt{(b-1)/ab} = 5.4 \sqrt{\frac{4}{15}} = 2.8
$$

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ \bigcirc 2013 Raj Jain

 $\sqrt{2}$

Example 21.5 (Cont) Example 21.5 (Cont)

- \Box Degrees of freedom for the errors are $(a-1)(b-1)=8$. For 90% confidence interval, $t_{[0.95;8]}$ = 1.86.
- **□** Confidence interval for the grand mean:

 $72.2 \pm 1.86 \times 1.4 = 72.2 \pm 2.6 = (69.6, 74.8)$

□ All three cache alternatives are significantly different from the average.

Example 21.5 (Cont) Example 21.5 (Cont)

□ All workloads, except TECO, are similar to the average and hence to each other.

Multiplicative Models Multiplicative Models

 \Box Additive model:

 $y_i = \mu + \alpha_j + \beta_i + e_{ij}$

 \Box If factors multiply \Rightarrow Use multiplicative model

 \Box Example: processors and workloads

Log of response follows an additive model

 \Box If the spread in the residuals increases with the mean response

 \Rightarrow Use transformation

Missing Observations Missing Observations

- \Box Recommended Method:
	- \triangleright Divide the sums by respective number of observations
	- Adjust the degrees of freedoms of sums of squares
	- Adjust formulas for standard deviations of effects
- **Other Alternatives:**
	- \triangleright Replace the missing value by \hat{y} such that the residual for the missing experiment is zero.
	- \triangleright Use y such that SSE is minimum.

Two Factor Designs Without Replications

 \Box Model:

$$
y_{ij} = \mu + \alpha_j + \beta_i + e_{ij}
$$

 \Box Effects are computed so that:

$$
\sum_{i=1}^{a} \alpha_i = 0
$$

$$
\sum_{i=1}^{b} \beta_i = 0
$$

 \Box Effects:

$$
\mu = \bar{y}_{..}; \, \alpha_j = \bar{y}_{.j} - \bar{y}_{..}; \, \beta_i = \bar{y}_{i.} - \bar{y}_{..}
$$

Summary (Cont) Summary (Cont)

□ Allocation of variation: SSE can be calculated after computing

 $\sum u_i^2 = a$

Degrees of freedom:

 $SSY = SS0 + SSA + SSB +$ **SSE** $ab = 1 + (a-1) + (b-1) + (a-1)(b-1)$

 \Box

Mean squares:
MSA = $\frac{SSA}{a-1}$; MSB = $\frac{SSB}{b-1}$; MSE = $\frac{SSE}{(a-1)(b-1)}$

Q Analysis of variance:

MSA/MSE should be greater than $F_{[1-\alpha;a-1,(a-1)(b-1)]}$. MSB/MSE should be greater than $F_{[1-\alpha;b-1,(a-1)(b-1)]}$.

Summary (Cont) Summary (Cont)

- **□** Standard deviation of effects: $s_{\mu}^2 = s_e^2/ab$; $s_{\alpha_i}^2 = s_e^2(a-1)/ab$; $s_{\beta_i}^2 = s_e^2(b-1)/ab$;
- \Box Contrasts:

For $\sum_{j=1}^{a} h_j \alpha_j$, $\sum_{j=1}^{a} h_j = 0$: Mean = $\sum_{j=1}^{a} h_j \bar{y}_{.j}$; Variance = $s_e^2 \sum_{j=1}^{a} h_j^2/b$
For $\sum_{i=1}^{b} h_i \beta_i$, $\sum_{i=1}^{b} h_i = 0$: Mean = $\sum_{i=1}^{b} h_i \bar{y}_{i}$; Variance = $s_e^2 \sum_{i=1}^{b} h_i^2/a$

- All confidence intervals are calculated using $t_{[1-\alpha/2;(a-1)(b-1)]}$.
- **□** Model assumptions:
	- Errors are IID normal variates with zero mean.
	- Errors have the same variance for all factor levels.
	- The effects of various factors and errors are additive.
- Visual tests:
	- > No trend in scatter plot of errors versus predicted responses

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ The normal quantile-quantile plot of errors should be linear.

Homework 21: Exercise 21.1 Homework 21: Exercise 21.1

Analyze the data of Case study 21.2 using a 2-factor additive model.

- \Box Estimate effects and prepare ANOVA table
- \Box Plot residuals as a function of predicted response.
- \Box Also, plot a normal quantile-quantile plot for the residuals.
- \Box Determine 90% confidence intervals for the paired differences. (Confidence intervals of α_1 - α_2 , α_1 - α_3 , α_2 - α_3)
- \Box Are the processors significantly different?
- \Box Discuss what indicators in the data, analysis, or plot would suggest that this is not a good model.