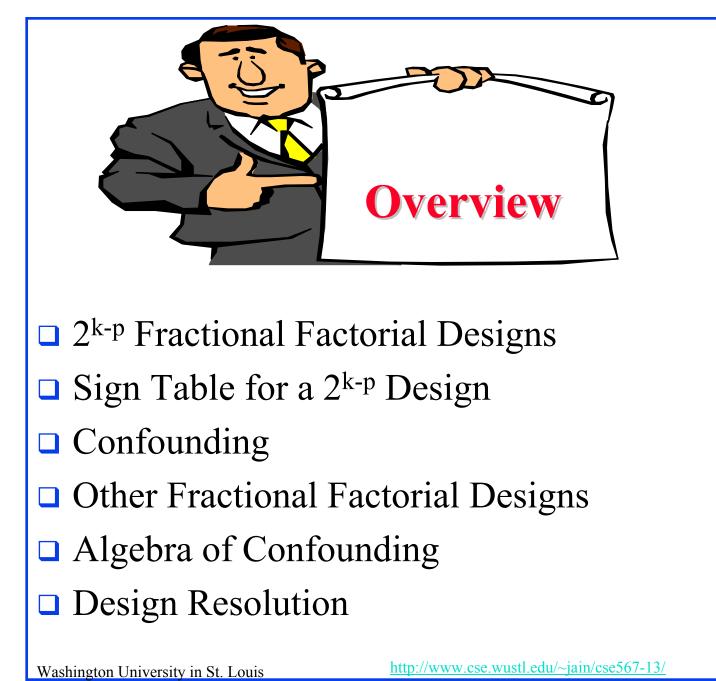
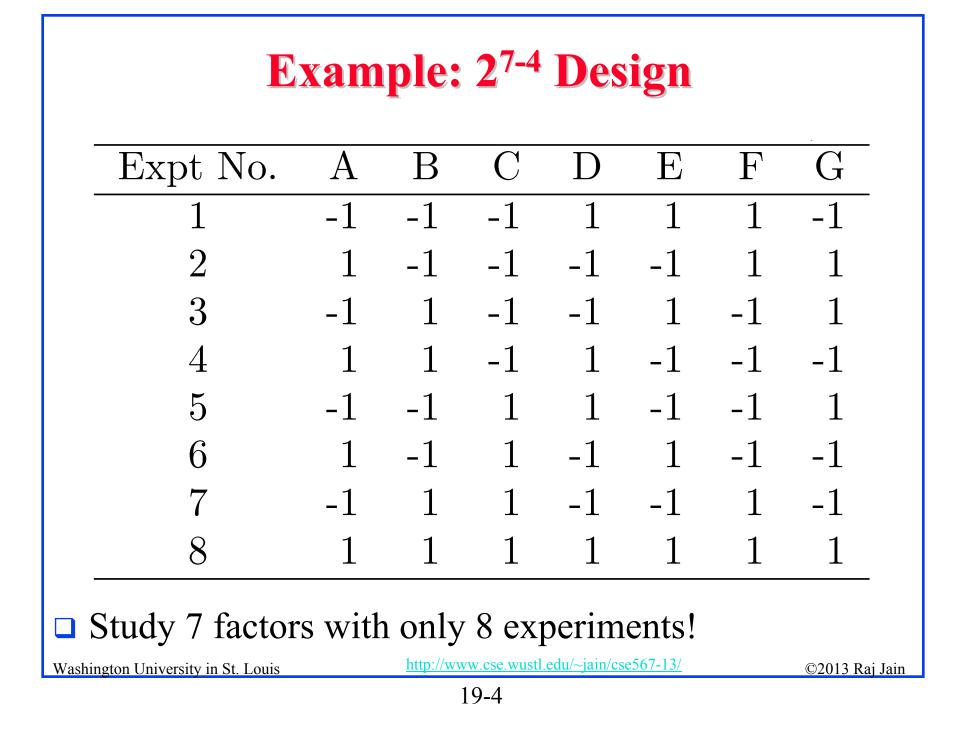
2^{k-p} Fractional Factorial Designs


Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-13/


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

2^{k-p} Fractional Factorial Designs

- Large number of factors
 - \Rightarrow large number of experiments
 - \Rightarrow full factorial design too expensive
 - \Rightarrow Use a fractional factorial design
- 2^{k-p} design allows analyzing k factors with only 2^{k-p} experiments.
 - 2^{k-1} design requires only half as many experiments 2^{k-2} design requires only one quarter of the experiments

Fractional Design Features

Full factorial design is easy to analyze due to orthogonality of sign vectors.

Fractional factorial designs also use orthogonal vectors. That is:

> The sum of each column is zero.

$$\sum_{i} x_{ij} = 0 \quad \forall j$$

*j*th variable, *i*th experiment.

> The sum of the products of any two columns is zero.

$$\sum_{i} x_{ij} x_{il} = 0 \quad \forall j \neq 1$$

> The sum of the squares of each column is 2^{7-4} , that is, 8.

$$\sum_{i} x_{ij}^2 = 8 \quad \forall j$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Analysis of Frac. Factorial Designs Model:

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_D x_D$$
$$+ q_E x_E + q_F x_F + q_G x_G$$

□ Effects can be computed using inner products.

$$q_{A} = \sum_{i} y_{i} x_{Ai}$$

$$= \frac{-y_{1} + y_{2} - y_{3} + y_{4} - y_{5} + y_{6} - y_{7} + y_{8}}{8}$$

$$q_{B} = \sum_{i} y_{i} x_{Bi}$$

$$= \frac{-y_{1} - y_{2} + y_{3} + y_{4} - y_{5} - y_{6} + y_{7} + y_{8}}{8}$$
Washington University in St. Louis http://www.cse.wustl.edu/-jain/cse567-13/ ©2013 Raj Jain 19-6

Example 19.1

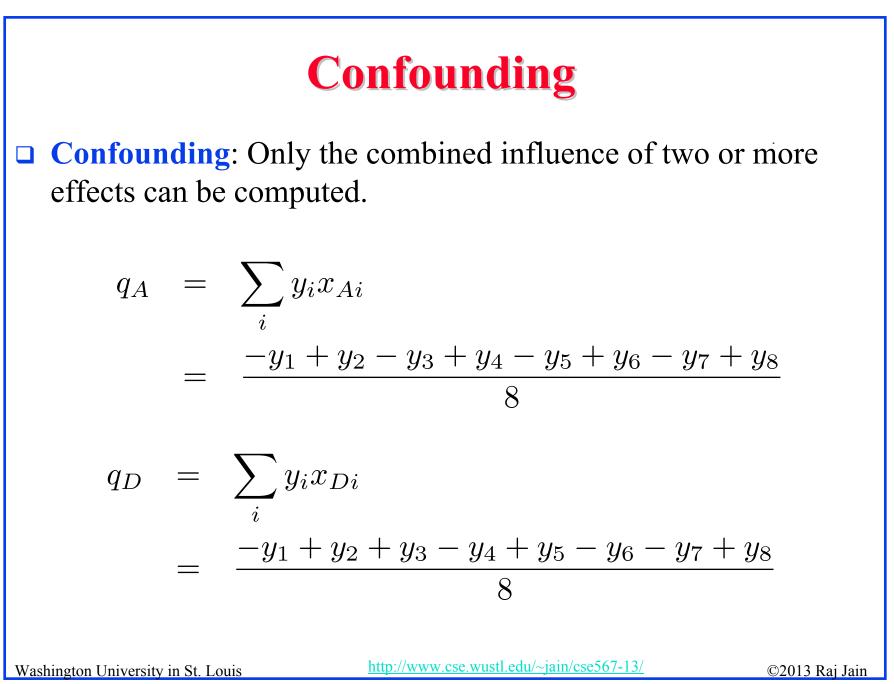
Ι	А	В	С	D	E	F	G	У
1	-1	-1	-1	1	1	1	-1	20
1	1	-1	-1	-1	-1	1	1	35
1	-1	1	-1	-1	1	-1	1	7
1	1	1	-1	1	-1	-1	-1	42
1	-1	-1	1	1	-1	-1	1	36
1	1	-1	1	-1	1	-1	-1	50
1	-1	1	1	-1	-1	1	-1	45
1	1	1	1	1	1	1	1	82
317	101	35	109	43	1	47	3	Total
39.62	12.62	4.37	13.62	5.37	0.125	5.87	0.37	Total/8
actors /	1 throu	igh G	evnlai	n 37 ′	0.60/a A	74%	<u> </u>	$\frac{10}{10}$ 6750

Factors A through G explain 37.26%, 4.74%, 43.40%, 6.75%, 0%, 8.06%, and 0.03% of variation, respectively.

 \Rightarrow Use only factors C and A for further experimentation.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/


Sign Table for a 2^{k-p} Design

Steps:

- 1. Prepare a sign table for a full factorial design with k-p factors.
- 2. Mark the first column I.
- 3. Mark the next k-p columns with the k-p factors.
- Of the (2^{k-p}-k+p-1) columns on the right, choose p columns and mark them with the p factors which were not chosen in step 1.

	Expt No.	А	В	С	AB	AC	BC	ABC
-	1	-1	-1	-1	1	1	1	-1
	2	1	-1	-1	-1	-1	1	1
	3	-1	1	-1	-1	1	-1	1
	4	1	1	-1	1	-1	-1	-1
	5	-1	-1	1	1	-1	-1	1
	6	1	-1	1	-1	1	-1	-1
	7	-1	1	1	-1	-1	1	-1
	8	1	1	1	1	1	1	1

Example: 2 ⁴⁻¹ Design								
Expt No.	A	В	С	AB	AC	BC	D	
1	-1	-1	-1	1	1	1	-1	
2	1	-1	-1	-1	-1	1	1	
3	-1	1	-1	-1	1	-1	1	
4	1	1	-1	1	-1	-1	-1	
5	-1	-1	1	1	-1	-1	1	
6	1	-1	1	-1	1	-1	-1	
7	-1	1	1	-1	-1	1	-1	
8	1	1	1	1	1	1	1	
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/ ©2013 Raj Jain								

19-11

$$Confounding (Cont)$$

$$q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

$$q_D = q_{ABC}$$

$$q_D + q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

$$\Rightarrow \text{ Effects of D and ABC are confounded. Not a problem if } q_{ABC} \text{ is negligible.}$$

$$y_{\text{Mathington University in St. Lous}}$$

Confounding (Cont)

Confounding representation: D=ABC
 Other Confoundings:

$$q_A = q_{BCD} = \sum_i y_i x_{Ai}$$
$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

⇒ A = BCD
A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, BC=AD, ABC=D, and I=ABCD
□ I=ABCD ⇒ confounding of ABCD with the mean.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Other Fractional Factorial Designs

□ A fractional factorial design is not unique. 2^p different designs. Another 2⁴⁻¹ Experimental Design

	•							
Expt No.	Α	В	C	D	AC	BC	ABC	
1	-1	-1	-1	1	1	1	-1	
2	1	-1	-1	-1	-1	1	1	
3	-1	1	-1	-1	1	-1	1	
4	1	1	-1	1	-1	-1	-1	
5	-1	-1	1	1	-1	-1	1	
6	1	-1	1	-1	1	-1	-1	
7	-1	1	1	-1	-1	1	-1	
8	1	1	1	1	1	1	1	
□ Confoundings: I=ABD, A=BD, B=AD, C=ABCD,								
D=AB, AC=BCD, BC=ACD, ABC=CD								
D = AD, AC = DCD, DC = ACD, ADC = CD								
Not as good as the previous design.								
Washington University in St. I	Louis		<u>http:</u>	<u>//www.cs</u>	se.wustl.edu	/~jain/cse56	7-13/	©2013 Raj Ja
				10				

Algebra of Confounding

- Given just one confounding, it is possible to list all other confoundings.
- **Rules:**
 - > *I* is treated as unity.
 - > Any term with a power of 2 is erased.

I = ABCD

Multiplying both sides by A:

 $A = A^2 B C D = B C D$

Multiplying both sides by B, C, D, and AB:

Algebra of Confounding (Cont)

 $B = AB^{2}CD = ACD$ $C = ABC^{2}D = ABD$ $D = ABCD^{2} = ABC$ $AB = A^{2}B^{2}CD = CD$

and so on.

□ Generator polynomial: I=ABCDFor the second design: I=ABC.

□ In a 2^{k-p} design, 2^p effects are confounded together.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Example 19.7

In the 2⁷⁻⁴ design: D = AB, E = AC, F = BC, G = ABC $\Rightarrow I = ABD, I = ACE, I = BCF, I = ABCG$ $\Rightarrow I = ABD = ACE = BCF = ABCG$ □ Using products of all subsets: I = ABD = ACE = BCF = ABCG = BCDE= ACDF = CDG = ABEF = BEG= AFG = DEF = ADEG = BDFG= CEFG = ABCDEFG

Washington University in St. Louis

Example 19.7 (Cont)

• Other confoundings:

$$A = BD = CE = ABCF = BCG = ABCDE$$

$$= CDF = ACDG = BEF = ABEG$$

$$= FG = ADEF = DEG = ABDFG$$

$$= ACEFG = BCDEFG$$

Design Resolution

□ Order of an effect = Number of terms

Order of ABCD = 4, order of I = 0.

- Order of a confounding = Sum of order of two terms
 E.g., AB=CDE is of order 5.
- Resolution of a Design

= Minimum of orders of confoundings

□ Notation: $R_{III} = Resolution-III = 2^{k-p}_{III}$

□ Example 1: $I=ABCD \Rightarrow R_{IV} = \text{Resolution-IV} = 2^{4-1}_{IV}$ A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, BC=AD, ABC=D, and I=ABCD

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Design Resolution (Cont)

Example 2:

 $I = ABD \implies R_{III}$ design.

□ Example 3:

$$I = ABD = ACE = BCF = ABCG = BCDE$$

$$= ACDF = CDG = ABEF = BEG$$

$$= AFG = DEF = ADEG = BDFG$$

$$= CEFG = ABCDEFG$$

□ This is a resolution-III design.

□ A design of higher resolution is considered a better design.

Case Study 19.1: Latex vs. troff

	Factors and Levels								
	Factor	-Level	+Level						
A	Program	Latex	troff-me						
B	Bytes	2100	25000						
	Equations	0	10						
D	Floats	0	10						
E	Tables	0	10						
F	Footnotes	0	10						

Washington University in St. Louis

Case Study 19.1 (Cont)

□ Design: 2⁶⁻¹ with I=BCDEF

	Factor	Effect	% Variation
В	Bytes	12.0	39.4%
A	Program	9.4	24.4%
C	Equations	7.5	15.6%
AC	Program		
	\times Equations	7.2	14.4%
E	Tables	3.5	3.4%
F	Footnotes	1.6	0.70%

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Case Study 19.1: Conclusions

- Over 90% of the variation is due to: Bytes, Program, and Equations and a second order interaction.
- Text file size were significantly different making it's effect more than that of the programs.
- High percentage of variation explained by the ``program × Equation" interaction

 \Rightarrow Choice of the text formatting program depends upon the number of equations in the text. troff not as good for equations.

CPU Time						
Program	# of Equations					
	-1(0)	1(10)				
-1(Latex)	-9.7	-9.1				
1(Troff)	-5.3	24.1				

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

19-23

Case Study 19.1: Conclusions (Cont)

- □ Low ``Program × Bytes" interaction ⇒ Changing the file size affects both programs in a similar manner.
- □ In next phase, reduce range of file sizes. Alternately, increase the number of levels of file sizes.

- Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- Many effects and interactions are confounded
- The resolution of a design is the sum of the order of confounded effects
- □ A design with higher resolution is considered better

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Exercise 19.1

Analyze the 2⁴⁻¹ design:

					•
		C_1		C	
		D_1	D_2	D_1	D_2
A_1	B_1		40	15	
	$egin{array}{c} B_1\ B_2 \end{array}$		20	10	
A_2	B_1	100			30
	B_2	120			50

- □ Quantify all main effects.
- □ Quantify percentages of variation explained.
- □ Sort the variables in the order of decreasing importance.
- □ List all confoundings.
- □ Can you propose a better design with the same number of experiments.
- □ What is the resolution of the design?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Exercise 19.2

Is it possible to have a 2⁴⁻¹_{III} design? a 2⁴⁻¹_{II} design? 2⁴⁻¹_{IV} design? If yes, give an example.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Homework 19

□ Updated Exercise 19.1 Analyze the 2⁴⁻¹ design:

		C_1		C	$\frac{1}{2}$
		D_1	D_2	D_1	D_2
A_1	B_1		30	15	
	$egin{array}{c} B_1\ B_2 \end{array}$		20	10	
A_2	B_1	100			$\begin{array}{c} 30 \\ 50 \end{array}$
	B_2	110			50

- Quantify all main effects.
- Quantify percentages of variation explained.
- □ Sort the variables in the order of decreasing importance.
- □ List all confoundings.

Washington University in St. Louis

- Can you propose a better design with the same number of experiments.
- □ What is the resolution of the design?

http://www.cse.wustl.edu/~jain/cse567-13/