The Art of Workload Selection

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-13/

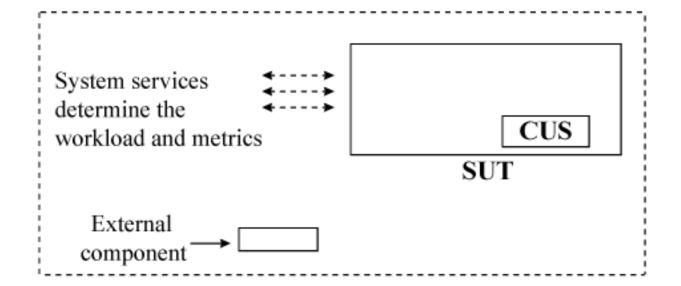
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

- Services Exercised
 - > Example: Timesharing Systems
 - > Example: Networks
 - > Example: Magnetic Tape Backup System
- □ Level of Detail
- Representativeness
- □ Timeliness
- Other Considerations in Workload Selection

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/


The Art of Workload Selection

Considerations:

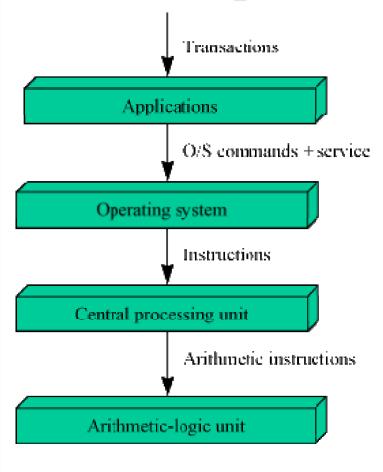
- Services exercised
- □ Level of detail
- □ Loading level
- □ Impact of other components
- □ Timeliness

Services Exercised

- □ SUT = System Under Test
- □ CUS = Component Under Study

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

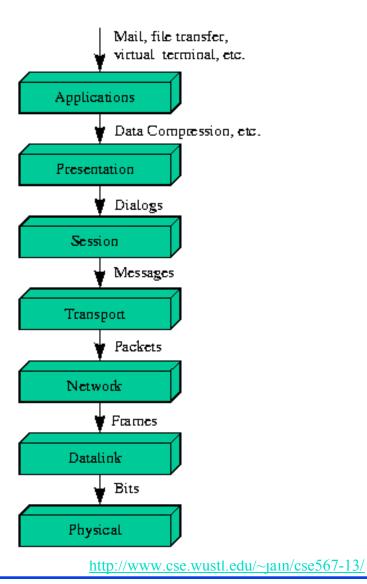

Services Exercised (Cont)

- Do not confuse SUT w CUS
- Metrics depend upon SUT: MIPS is ok for two CPUs but not for two timesharing systems.
- Workload: depends upon the system.
- Examples:
 - > CPU: instructions
 - > System: Transactions
 - > Transactions not good for CPU and vice versa
 - > Two systems identical except for CPU
 - Comparing Systems: Use transactions
 - □ Comparing CPUs: Use instructions
 - > Multiple services: Exercise as complete a set of services as possible.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Example: Timesharing Systems



- Applications
 - ⇒ Application benchmark
- Operating System
 - ⇒ Synthetic Program
- Central Processing Unit
 - ⇒ Instruction Mixes
- □ Arithmetic Logical Unit
 - ⇒ Addition instruction

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Example: Networks

©2013 Raj Jain

Washington University in St. Louis

Level of Detail

- Most frequent request:
 - > Examples: Addition Instruction, Debit-Credit, Kernels
 - > Valid if one service is much more frequent than others
- □ Frequency of request types
 - > Examples: Instruction mixes
 - \gt Context sensitivity \Rightarrow Use set of services
 - ➤ History-sensitive mechanisms (caching) ⇒ Context sensitivity
- □ Time-stamped sequence of requests
 - > May be too detailed
 - > Not convenient for analytical modeling
 - > May require exact reproduction of component behavior

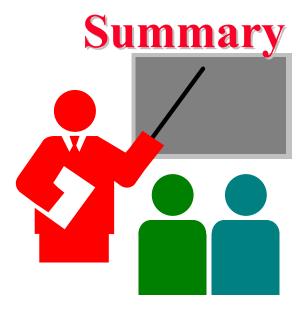
Level of Detail (Cont)

- Average resource demand
 - > Used for analytical modeling
 - > Grouped similar services in classes
- Distribution of resource demands
 - > Used if variance is large
 - > Used if the distribution impacts the performance
- Workload used in simulation and analytical modeling:
 - > Non executable: Used in analytical/simulation modeling
 - > Executable workload: can be executed directly on a system

http://www.cse.wustl.edu/~jain/cse567-13/

Representativeness

The test workload and real workload should have the same:


- □ Elapsed Time
- Resource Demands
- □ Resource Usage Profile: Sequence and the amounts in which different resources are used.

Timeliness

- □ Users are a moving target.
- \square New systems \Rightarrow new workloads
- □ Users tend to optimize the demand.
- □ Fast multiplication ⇒ Higher frequency of multiplication instructions.
- ☐ Important to monitor user behavior on an ongoing basis.

Other Considerations in Workload Selection

- □ Loading Level: A workload may exercise a system to its:
 - > Full capacity (best case)
 - > Beyond its capacity (worst case)
 - > At the load level observed in real workload (typical case).
 - \gt For procurement purposes \Rightarrow Typical
 - \triangleright For design \Rightarrow best to worst, all cases
- Impact of External Components:
 - ➤ Do not use a workload that makes external component a bottleneck ⇒ All alternatives in the system give equally good performance.
- Repeatability

- Services exercised determine the workload
- Level of detail of the workload should match that of the model being used
- Workload should be representative of the real systems usage in recent past
- Loading level, impact of external components, and repeatability or other criteria in workload selection

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/

Homework 5: Exercise 5.1

- What metric and workload would you choose to compare:
 - a. Two systems with similar functionality: IBM PC versus MAC
 - b. Two systems for very different applications: PC versus Workstations
 - c. Two systems with identical functionality: IBM PC versus Dell PC
 - d. Two versions of the same operating systems: Windows 98 vs Windows XP
 - e. Two hardware components: Two floppy drives
 - f. Two languages: C vs. Pascal

One metric and one workload is sufficient