CSE 567M Computer Systems Analysis

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-13/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k_01int.htm

- Goal of this Course
- Contents of the course
- □ Tentative Schedule
- Project
- Grading

Goal of This Course

- □ Comprehensive course on performance analysis
- □ Includes measurement, statistical modeling, experimental design, simulation, and queuing theory
- □ How to avoid common mistakes in performance analysis
- □ Graduate course: (Advanced Topics)
 - ⇒ Lot of independent reading and writing
 - ⇒ Project/Survey paper (Research techniques)

Text Book

□ R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363 (Winner of the "1992 Best Computer Systems Book" Award from Computer Press Association")

Objectives: What You Will Learn

- Specifying performance requirements
- Evaluating design alternatives
- Comparing two or more systems
- □ Determining the optimal value of a parameter (system tuning)
- □ Finding the performance bottleneck (bottleneck identification)
- Characterizing the load on the system (workload characterization)
- Determining the number and sizes of components (capacity planning)
- □ Predicting the performance at future loads (forecasting).

Basic Terms

- □ System: Any collection of hardware, software, and firmware
- Metrics: Criteria used to evaluate the performance of the system. components.
- Workloads: The requests made by the users of the system.

Main Parts of the Course

- □ Part I: An Overview of Performance Evaluation
- □ Part II: Measurement Techniques and Tools
- □ Part III: Probability Theory and Statistics
- □ Part IV: Experimental Design and Analysis
- □ Part V: Simulation
- □ Part VI: Queueing Theory

Part I: An Overview of Performance Evaluation

- Introduction
- Common Mistakes and How To Avoid Them
- □ Selection of Techniques and Metrics

Example I

- What performance metrics should be used to compare the performance of the following systems:
 - > Two disk drives?
 - > Two transaction-processing systems?
 - > Two packet-retransmission algorithms?

Part II: Measurement Techniques and Tools

- Types of Workloads
- Popular Benchmarks
- □ The Art of Workload Selection
- Workload Characterization Techniques
- Monitors
- Accounting Logs
- Monitoring Distributed Systems
- Load Drivers
- Capacity Planning
- □ The Art of Data Presentation
- Ratio Games

Example II

- Which type of monitor (software or hardware) would be more suitable for measuring each of the following quantities:
 - > Number of Instructions executed by a processor?
 - Degree of multiprogramming on a timesharing system?
 - > Response time of packets on a network?

Part III: Probability Theory and Statistics

- Probability and Statistics Concepts
- □ Four Important Distributions
- Summarizing Measured Data By a Single Number
- Summarizing The Variability Of Measured Data
- Graphical Methods to Determine Distributions of Measured Data
- Sample Statistics
- Confidence Interval
- Comparing Two Alternatives
- Measures of Relationship
- Simple Linear Regression Models
- Multiple Linear Regression Models
- Other Regression Models

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k 01int.htm

Example III

□ The number of packets lost on two links was measured for four file sizes as shown below:

File Size	Link A	Link B
1000	5	10
1200	7	3
1300	3	0
50	0	1

Which link is better?

Part IV: Experimental Design and Analysis

- □ Introduction to Experimental Design
- □ 2^k Factorial Designs
- □ 2^kr Factorial Designs with Replications
- □ 2^{k-p} Fractional Factorial Designs
- One Factor Experiments
- □ Two Factors Full Factorial Design without Replications
- Two Factors Full Factorial Design with Replications
- ☐ General Full Factorial Designs With *k* Factors

Example IV

- □ The performance of a system depends on the following three factors:
 - > Garbage collection technique used: G1, G2, or none.
 - > Type of workload: editing, computing, or AI.
 - > Type of CPU: C1, C2, or C3.

How many experiments are needed? How does one estimate the performance impact of each factor?

Part V: Simulation

- □ Introduction to Simulation
- □ Types of Simulations
- Model Verification and Validation
- Analysis of Simulation Results
- □ Random-Number Generation
- □ Testing Random-Number Generators
- Random-Variate Generation
- Commonly Used Distributions

Example V

- □ In order to compare the performance of two cache replacement algorithms:
 - > What type of simulation model should be used?
 - > How long should the simulation be run?
 - > What can be done to get the same accuracy with a shorter run?
 - > How can one decide if the random-number generator in the simulation is a good generator?

Part VI: Queueing Theory

- □ Introduction to Queueing Theory
- □ Analysis of A Single Queue
- Queueing Networks
- Operational Laws
- Mean Value Analysis and Related Techniques
- Convolution Algorithm
- Advanced Techniques

Example VI

□ The average response time of a database system is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds.

Using a queueing model for the system, determine the following:

- > System utilization
- > Average service time per query
- Number of queries completed during the observation interval
- > Average number of jobs in the system
- > Probability of number of jobs in the system being greater than 10
- > 90-percentile response time
- > 90-percentile waiting time

The Art of Performance Evaluation

□ Given the same data, two analysts may interpret them differently.

Example:

□ The throughputs of two systems A and B in transactions per second is as follows:

System	Workload 1	Workload 2
\overline{A}	20	10
В	10	20

Possible Solutions

□ Compare the average:

System	Workload 1	Workload 2	Average
A	20	10	15
В	10	20	15

Conclusion: The two systems are equally good.

□ Compare the ratio with system B as the base

System	Workload 1	Workload 2	Average
A	2	0.5	1.25
В	1	1	1

Conclusion: System A is better than B.

Solutions (Cont)

□ Compare the ratio with system A as the base

System	Workload 1	Workload 2	Average
A	1	1	1
В	0.5	2	1.25

Conclusion: System B is better than A.

- □ Similar games in: Selection of workload, Measuring the systems, Presenting the results.
- Common mistakes will also be discussed.

Grading

□ Exams (Best of 2 mid terms + Final) 60%

□ Class participation 5%

□ Homeworks 15%

□ Project 20%

Prerequisites

- □ CSE 131: Computer Science I
- □ CSE 126: Introduction To Computer Programming
- □ CSE 260M: Introduction To Digital Logic And Computer Design (Not required)
- Basic Probability and Statistics
- Matrix multiplication and inversion

Prerequisite

- Statistics:
 - > Mean, variance
 - > Normal distribution
 - > Density function, Distribution function
 - Coefficient of variationCorrelation coefficient
 - > Median, mode, Quantile
- Programming

Tentative Schedule

Date	Topic	Chapter
1/14/2013	Course Introduction	
1/16/2013	Common Mistakes	2
	Selection of Techniques and Metrics	3
1/21/2013	No Class: Martin Luther King Holiday	
1/23/2013	Selection of Techniques and Metrics (Continued)	3
	Types of Workloads	4
	Workload Selection	5
1/28/2013	Workload Selection (Cont)	5
	Data Presentation	10
	Ratio Games	11
1/30/2013	Summarizing Measured Data	12
2/4/2013	Summarizing Measured Data (Cont)	12
	Comparing Systems Using Random Data	13
2/6/2013	Comparing Systems Using Random Data (Cont)	13
	Simple Linear Regression Models	14
2/11/2013	Simple Linear Regression Models (Cont)	14
	Other Regression Models	15
	Other Regression Models (Cont)	15
2/18/2013	Mid-Term Exam 1	

Washington University in St. Louis

 $\underline{http://www.cse.wustl.edu/\sim}jain/cse567-13/k\underline{-01int.htm}$

Tentative Schedule (Cont)

Date	Topic	Chapter
2/20/2013	Other Regression Models (Cont)	15
2/25/2013	Experimental Designs	16
	2k Experimental Designs	17
2/27/2013	Factorial Designs with Replication	18
3/4/2013	Factorial Designs with Replication	18
	Fractional Factorial Designs	19
3/6/2013	One Factor Experiments	20
	Two Factor Full Factorial Design w/o Replications	21
3/11/2013	WUSTL Spring Break (No Classes)	
3/13/2013	WUSTL Spring Break (No Classes)	
3/18/2013	Two Factor Full Factorial Designs with Replications	22
	General Full Factorial Designs	23
	Introduction to Queueing Theory	30
3/20/2013	Introduction to Queueing Theory (Cont)	30
	Analysis of Single Queue	31
3/25/2013	Mid-Term Exam 2	

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k_01int.htm

Tentative Schedule (Cont)

Date	Topic	Chapter
3/27/2013	Queueing Networks	32
4/1/2013	Operational Laws	33
	Mean-Value Analysis	34
4/3/2013	Mean-Value Analysis (Cont)	34
	Introduction to Simulation	24
4/10/2013	Introduction to Simulation (Cont)	24
	Analysis of Simulation Results	25
	Analysis of Simulation Results (Cont)	25
4/17/2013	Random Number Generation	26
4/22/2013	Random Number Generation (Cont)	26
	Random Variate Generation	28
4/24/2013	Final Exam	

□ Note final exam is in the last class before the reading period.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k_01int.htm

Projects

- A survey paper on a performance topic
 - Workloads/Metrics/Analysis: Databases, Networks,
 Computer Systems, Web Servers, Graphics, Sensors,
 Distributed Systems
 - Comparison of Measurement, Modeling, Simulation, Analysis Tools: NS2
 - Comprehensive Survey:
 Technical Papers, Industry Standards, Products
- A real case study on performance of a system you are already working on
- Average 6 Hrs/week/person on project + 9 Hrs/week/person on class
- \square Recent Developments: Last 2 to 4 years \Rightarrow Not in books
- Better ones may be submitted to magazines or journals

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k_01int.htm

Projects (Cont)

- □ Goal: Provide an insight (or information) not obvious before the project.
- □ Real Problems: Thesis work, or job
- ☐ Homeworks: Apply techniques learnt to your system.

Example of Previous Case Studies

- Performance of Google App Engine and Amazon Web Service
- Availability and Sensitivity of Smart Grid Components
- Modeling and Analysis Issues in x86-based Hypervisors
- Image Sensor Performance
- Performance of Solving Laplace's Equation using Auto-Pipe
- Performance Modeling of Multi-core Processors
- Performance of Named Data Networking
- □ A Measurement Study of Packet Reception using Linux
- □ Performance Analysis of Robotics Systems
- Performance and Measurement Issues of Smart Phones Design
- Analysis of Online Social Networks
- Measurement Study on the BitTorrent File Distribution System
- □ A Survey of Wireless Sensor Network Simulation Tools

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k 01int.htm

Case Studies (Cont)

- Database Systems Performance Evaluation Techniques
- A Survey of Hardware Performance Analysis Tools
- Analytical Modeling of Beyond Visual Range Air Combat
- A Survey of Network Simulation Tools: Current Status and Future Development
- Performance Analysis of Data Encryption Algorithms
- Case Study of the Performance of a Gamma-Ray Event Parameterization Application
- Survey on Performance Analysis of MAC protocols
- A Summary of Network Traffic Monitoring and Analysis Techniques
- A Survey of Network Performance Monitoring Tools

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13/k_01int.htm

Case Studies (Cont)

- Survey of Network Performance Monitoring Tools
- SNMP and Beyond: A Survey of Network Performance Monitoring Tools
- □ A Survey of Network Traffic Monitoring and Analysis Tools
- Operating System and Process Monitoring Tools
- A Survey of Performance Analysis Tools
- Processor workloads
- □ Case Study: Performance Analysis of a Diversified Router
- □ Performance Analysis of Wireless Sensor Networks
- An Overview of Software Performance Analysis Tools and Techniques: From GProf to DTrace
- Survey of Software Monitoring and Profiling Tools

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse567-13/k 01int.htm

Case Studies (Cont)

- □ From Poisson Processes to Self-Similarity: a Survey of Network Traffic Models A Historical View of Network Traffic Models
- A Survey of Network Traffic Models
- Verification and Validation of X-Sim: A Trace-Based Simulator
- A Performance Model for a Thermally Adaptive Application Implemented in Reconfigurable HW

Project Schedule

Mon 2/25 Topic Selection

Mon 3/04 References Due

Mon 3/18 Outline Due

Mon 4/03 First Draft Due -> Peer reviewed

Mon 4/10 Reviews Returned

Mon 4/17 Final Report Due

Office Hours

- □ Monday/Wednesday:11 AM to 12 noon
- □ Office: Bryan 523
- □ Teaching Assistant:
 - > Michael Hall, Bryan 405G, mhall24@wustl.edu
 - > Office Hours: Thursday/Friday 2PM-3PM

Frequently Asked Questions

- ☐ Yes, I do use "curve". Your grade depends upon the performance of the rest of the class.
- All homeworks are due on the following Monday unless specified otherwise.
- Any late submissions, if allowed, will *always* have a penalty.
- □ One 8.4x11 sheet allowed in the exam. Book not allowed. Time limited.
- Exams consist of numerical as well as multiple-choice (true-false) questions.
- □ There is negative grading on incorrect multiple-choice questions. Grade: +1 for correct. -1/(n-1) for incorrect.
- Everyone including the graduating students are graded the same way.

- □ Goal: To prepare you for correct analysis and modeling of any system
- □ There will be a self-reading and writing
- Get ready to work hard

Quiz 0: Prerequisites

True or False?
T F
\square The mean of uniform(0,1) variates is 1.
\Box The sum of two normal variates with means 4 and 3 has a mean of 7.
☐ ☐ The probability of a fair coin coming up head once and tail once in two throws is 1.
\Box The density function f(x) approaches 1 as x approaches ∞ .
\square \square Given two variables, the variable with higher median also has a higher mean.
☐ ☐ The probability of a fair coin coming up heads twice in a row is 1/4.
\Box \Box The difference of two normal variates with means 4 and 3 has a mean of 4/3.
\Box The cumulative distribution function $F(x)$ approaches 1 as x approaches ∞ .
☐ ☐ High coefficient of variation implies a low variance and vice versa.
\square If x is 0, then after x++, x will be 1.
Marks = Correct Answers Incorrect Answers =
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-13/k 01int.htm ©2013 Rai Jain