Introduction to Queueing Theory

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse567-11/

Washington	University	in St.	Louis
<u> </u>			

Queueing Models: What You will learn?

- □ What are various types of queues.
- □ What is meant by an M/M/m/B/K queue?
- How to obtain response time, queue lengths, and server utilizations?
- □ How to represent a system using a network of several queues?
- □ How to analyze simple queueing networks?
- How to obtain bounds on the system performance using queueing models?
- How to obtain variance and other statistics on system performance?
- □ How to subdivide a large queueing network model and solve it?

Basic Components of a Queue

Kendall Notation A/S/m/B/K/SD

- □ *A*: Arrival process
- □ *S*: Service time distribution
- \square *m*: Number of servers
- □ *B*: Number of buffers (system capacity)
- □ *K*: Population size, and
- □ *SD*: Service discipline

Arrival Process

- **Arrival times:** t_1, t_2, \ldots, t_j
- □ Interarrival times: $\tau_j = t_j t_{j-1}$
- τ_j form a sequence of Independent and Identically Distributed (IID) random variables
- $\square Exponential + IID \Rightarrow Poisson$
- □ Notation:
 - > M = Memoryless = Poisson
 - \succ E = Erlang
 - > H = Hyper-exponential
 - > $G = General \Rightarrow$ Results valid for all distributions

Service Time Distribution

- □ Time each student spends at the terminal.
- □ Service times are IID.
- Distribution: M, E, H, or G
- □ Device = Service center = Queue

```
□ Buffer = Waiting positions
```

Service Disciplines

- □ First-Come-First-Served (FCFS)
- □ Last-Come-First-Served (LCFS)
- □ Last-Come-First-Served with Preempt and Resume (LCFS-PR)
- □ Round-Robin (RR) with a fixed quantum.
- $\square Small Quantum \Rightarrow Processor Sharing (PS)$
- □ Infinite Server: (IS) = fixed delay
- □ Shortest Processing Time first (SPT)
- □ Shortest Remaining Processing Time first (SRPT)
- □ Shortest Expected Processing Time first (SEPT)
- □ Shortest Expected Remaining Processing Time first (SERPT).
- Biggest-In-First-Served (BIFS)

□ Loudest-Voice-First-Served (LVFS)

Common Distributions

- □ *M*: Exponential
- $\Box E_k$: Erlang with parameter k
- \Box H_k : Hyper-exponential with parameter k
- $\Box D: Deterministic \Rightarrow constant$
- $\Box G: \text{ General} \Rightarrow \text{All}$
- □ Memoryless:
 - > Expected time to the next arrival is always $1/\lambda$ regardless of the time since the last arrival
 - > Remembering the past history does not help.

Example *M/M/3/20/1500/FCFS*

- □ Time between successive arrivals is exponentially distributed.
- Service times are exponentially distributed.
- □ Three servers
- □ 20 Buffers = 3 service + 17 waiting
- □ After 20, all arriving jobs are lost
- □ Total of *1500* jobs that can be serviced.
- □ Service discipline is first-come-first-served.
- Defaults:
 - Infinite buffer capacity
 - Infinite population size
 - FCFS service discipline.
- $\Box \quad G/G/1 = G/G/1/\infty/\infty/FCFS$

Group Arrivals/Service

- □ Bulk arrivals/service
- \square *M*^[x]: *x* represents the group size
- □ $G^{[x]}$: a bulk arrival or service process with general inter-group times.
- □ Examples:
 - M^[x]/M/1 : Single server queue with bulk Poisson arrivals and exponential service times
 - *M/G^[x]/m:* Poisson arrival process, bulk service with general service time distribution, and *m* servers.

Key Variables (cont)

- \Box τ = Inter-arrival time = time between two successive arrivals.
- λ = Mean arrival rate = 1/E[τ]
 May be a function of the state of the system, e.g., number of jobs already in the system.
- \Box *s* = Service time per job.
- \square μ = Mean service rate per server = 1/E[s]
- □ Total service rate for *m* servers is $m\mu$
- *n* = Number of jobs in the system.
 This is also called **queue length**.
- Note: Queue length includes jobs currently receiving service as well as those waiting in the queue.

Key Variables (cont)

- \square n_q = Number of jobs waiting
- \square n_s = Number of jobs receiving service
- \Box r = Response time or the time in the system = time waiting + time receiving service
- \square *w* = Waiting time
 - = Time between arrival and beginning of service

Rules for All Queues

Rules: The following apply to G/G/m queues

1. Stability Condition:

 $\lambda < m\mu$

Finite-population and the finite-buffer systems are always stable.

2. Number in System versus Number in Queue:

 $n = n_q + n_s$ Notice that *n*, *n_q*, and *n_s* are random variables. $E[n] = E[n_q] + E[n_s]$ If the service rate is independent of the number in the queue, $Cov(n_q, n_s) = 0$ $Var[n] = Var[n_q] + Var[n_s]$

Rules for All Queues (cont)

3. Number versus Time:

If jobs are not lost due to insufficient buffers, Mean number of jobs in the system

= Arrival rate × Mean response time

4. Similarly,

Mean number of jobs in the queue

= Arrival rate × Mean waiting time

This is known as **Little's law**.

5. Time in System versus Time in Queue

r = w + s r, w, and s are random variables. E[r] = E[w] + E[s]

Rules for All Queues(cont)

6. If the service rate is independent of the number of jobs in the queue,

Cov(w,s)=0

 $\operatorname{Var}[r] = \operatorname{Var}[w] + \operatorname{Var}[s]$

Little's Law

- □ Mean number in the system
 - = Arrival rate × Mean response time
- This relationship applies to all systems or parts of systems in which the number of jobs entering the system is equal to those completing service.
- □ Named after Little (1961)
- □ Based on a black-box view of the system:

In systems in which some jobs are lost due to finite buffers, the law can be applied to the part of the system consisting of the waiting and serving positions

- □ Similarly, for those currently receiving the service, we have:
- □ Mean number in service = Arrival rate × Mean service time

Example 30.3

- A monitor on a disk server showed that the average time to satisfy an I/O request was 100 milliseconds. The I/O rate was about 100 requests per second. What was the mean number of requests at the disk server?
- Using Little's law:

Mean number in the disk server

- = Arrival rate × Response time
- = 100 (requests/second) ×(0.1 seconds)
- = 10 requests

Stochastic Processes

- **Process**: Function of time
- Stochastic Process: Random variables, which are functions of time
- **Example 1:**
 - > n(t) = number of jobs at the CPU of a computer system
 - > Take several identical systems and observe n(t)
 - > The number n(t) is a random variable.
 - Can find the probability distribution functions for n(t) at each possible value of t.

Example 2:

> w(t) = waiting time in a queue

Types of Stochastic Processes

- Discrete or Continuous State Processes
- Markov Processes
- Birth-death Processes
- Poisson Processes

Discrete/Continuous State Processes

- □ Discrete = Finite or Countable
- □ Number of jobs in a system n(t) = 0, 1, 2, ...
- \square n(t) is a discrete state process
- □ The waiting time w(t) is a continuous state process.
- □ **Stochastic Chain**: discrete state stochastic process

Markov Processes

- □ Future states are independent of the past and depend only on the present.
- Named after A. A. Markov who defined and analyzed them in 1907.
- □ Markov Chain: discrete state Markov process
- Markov ⇒ It is not necessary to know how long the process has been in the current state ⇒ State time has a memoryless (exponential) distribution
- \square *M/M/m* queues can be modeled using Markov processes.
- The time spent by a job in such a queue is a <u>Markov process</u> and the number of jobs in the queue is a <u>Markov chain</u>.

- The discrete space Markov processes in which the transitions are restricted to neighboring states
- □ Process in state *n* can change only to state n+1 or n-1.
- Example: the number of jobs in a queue with a single server and individual arrivals (not bulk arrivals)

Poisson Processes

□ Interarrival time s = IID and exponential ⇒ number of arrivals *n* over a given interval (*t*, *t*+*x*) has a Poisson distribution

 \Rightarrow arrival = Poisson process or Poisson stream

□ Properties:

> 2.Splitting: If the probability of a job going to *ith* substream is p_i , each substream is also Poisson with a mean rate of $p_i \lambda$

©2011 Raj Jain

Poisson Processes (Cont)

> 3.If the arrivals to a single server with exponential service time are Poisson with mean rate λ , the departures are also Poisson with the same rate λ provided $\lambda < \mu$.

Poisson Process(cont)

> 4. If the arrivals to a service facility with m service centers are Poisson with a mean rate λ , the departures also constitute a Poisson stream with the same rate λ , provided $\lambda < \sum_{i} \mu_{i}$. Here, the servers are assumed to have exponentially distributed service times.

- □ Kendall Notation: A/S/m/B/k/SD, M/M/1
- Number in system, queue, waiting, service
 Service rate, arrival rate, response time, waiting time, service time
- Little's Law: Mean number in system = Arrival rate X Mean time spent in the system
- □ Processes: Markov ⇒ Memoryless, Birth-death ⇒ Adjacent states Poisson ⇒ IID and exponential inter-arrival Washington University in St. Louis

©2011 Raj Jain

Homework 30

□ Updated Exercise 30.4

During a one-hour observation interval, the name server of a distributed system received *12,960* requests. The mean response time of these requests was observed to be one-third of a second.

- a. What is the mean number of queries in the server?
- b. What assumptions have you made about the system?
- c. Would the mean number of queries be different if the service time was not exponentially distributed?