2 ^k Factorial	
Designs	
Raj Jain	
Washington University in Saint Louis	
Saint Louis, MO 63130	
Jain@cse.wustl.edu	
These slides are available on-line at:	
http://www.cse.wustl.edu/~jain/cse567-11/	
Washington University in St. Louis CSE567M	©2011 Rai Jain

- □ 2² Factorial Designs
- Model
- Computation of Effects
- **Gign** Table Method
- □ Allocation of Variation
- General 2^k Factorial Designs

2^k Factorial Designs

- □ k factors, each at two levels.
- □ Easy to analyze.

Washington University in St. Louis

- □ Helps in sorting out impact of factors.
- □ Good at the beginning of a study.
- □ Valid only if the effect is unidirectional.
 - E.g., memory size, the number of disk drives

CSE567M

2² Factorial Designs

□ Two factors, each at two levels.

Performance in MIPS						
Cache	Memory Size					
Size	4M Bytes	16M Bytes				
1K	15	45				
$2\mathrm{K}$	25	75				

x_A	=	$\begin{vmatrix} -1\\ 1 \end{vmatrix}$	if 4M bytes memory if 16M bytes memory
x_B	=	$\begin{vmatrix} -1\\ 1 \end{vmatrix}$	if 1K bytes cache if 2K bytes cache

y	$Model = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$	
Observations:		
	$15 = q_0 - q_A - q_B + q_{AB}$	
	$45 = q_0 + q_A - q_B - q_{AB}$	
	$25 = q_0 - q_A + q_B - q_{AB}$	
	$75 = q_0 + q_A + q_B + q_{AB}$	
Solution:		
	$y = 40 + 20x_A + 10x_B + 5x_A x_B$	
Interpretation: Mean perfe	formance = 40 MIPS	
Effect of memory $= 20$ MIH	PS; Effect of cache = 10 MIPS	
Interaction between memor Washington University in St. Louis	ry and cache = 5 MIPS. $_{\text{CSE567M}}$ ©2011 Raj Jain	

Computation of Effects

Experiment	А	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

$$y_1 = q_0 - q_A - q_B + q_{AB}$$

$$y_2 = q_0 + q_A - q_B - q_{AB}$$

$$y_3 = q_0 - q_A + q_B - q_{AB}$$

$$y_4 = q_0 + q_A + q_B + q_{AB}$$

Computation of Effects (Cont)

Solution:

$$q_{0} = \frac{1}{4}(y_{1} + y_{2} + y_{3} + y_{4})$$

$$q_{A} = \frac{1}{4}(-y_{1} + y_{2} - y_{3} + y_{4})$$

$$q_{B} = \frac{1}{4}(-y_{1} - y_{2} + y_{3} + y_{4})$$

$$q_{AB} = \frac{1}{4}(y_{1} - y_{2} - y_{3} + y_{4})$$

Notice that effects are linear combinations of responses. Sum of the coefficients is zero \Rightarrow contrasts.

Computation of Effects (Cont)

Experiment	A	В	У
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y_3
4	1	1	y_4
$q_A = \frac{1}{4}(-y_1$	$+y_2$	$y_{2} - y_{1}$	$_{3} + y_{4}$

$$q_B = \frac{1}{4}(-y_1 - y_2 + y_3 + y_4)$$

Notice:

$$q_A = \text{Column } A \times \text{Column } y$$

 $q_B = \text{Column } B \times \text{Column } y$

Sign Table Method

Ι	А	В	AB	У
1	-1	-1	1	15
1	1	-1	-1	45
1	-1	1	-1	25
1	1	1	1	75
160	80	40	20	Total
40	20	10	5	Total/4

Allocation of Variation

- □ Importance of a factor = proportion of the *variation* explained
 - Sample Variance of $y = s_y^2 = \frac{\sum_{i=1}^{2^2} (y_i \bar{y})^2}{2^2 1}$ Total Variation of $y = \text{SST} = \sum_{i=1}^{2^2} (y_i - \bar{y})^2$
- For a 2² design: SST = 2²q_A² + 2²q_B² + 2²q_{AB}² = SSA + SSB + SSAB
 Variation due to A = SSA = 2² q_A²
 Variation due to B = SSB = 2² q_B²
 Variation due to interaction = SSAB = 2² q_{AB}²
 Fraction explained by A = SSA = 2² q_{AB}² Variation ≠ Variance Variation University in St. Louis

Derivation

□ Model:

$$y_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi}$$

Notice

1. The sum of entries in each column is zero:

$$\sum_{i=1}^{4} x_{Ai} = 0; \sum_{i=1}^{4} x_{Bi} = 0; \sum_{i=1}^{4} x_{Ai} x_{Bi} = 0;$$

2. The sum of the squares of entries in each column is 4:

$$\sum_{i=1}^{4} x_{Ai}^2 = 4$$
$$\sum_{i=1}^{4} x_{Bi}^2 = 4$$
$$\sum_{i=1}^{4} (x_{Ai} x_{Bi})^2 = 4$$
Washington University in St. Louis CSE567M

©2011 Raj Jain

Derivation (Cont)

3. The columns are orthogonal (inner product of any two columns is zero):

$$\sum_{i=1}^{4} x_{Ai} x_{Bi} = 0$$

$$\sum_{i=1}^{4} x_{Ai} (x_{Ai} x_{Bi}) = 0$$

$$\sum_{i=1}^{4} x_{Bi} (x_{Ai} x_{Bi}) = 0$$

Derivation (Cont)

□ Variation of y

$$= \sum_{i=1}^{4} (y_i - \bar{y})^2$$

= $\sum_{i=1}^{4} (q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi})^2$
= $\sum_{i=1}^{4} (q_A x_{Ai})^2 + \sum_{i=1}^{4} (q_B x_{Bi})^2$
+ $\sum_{i=1}^{4} (q_{AB} x_{Ai} x_{Bi})^2 + Product terms$
= $q_A^2 \sum_{i=1}^{4} (x_{Ai})^2 + q_B^2 \sum_{i=1}^{4} (x_{Bi})^2$
+ $q_{AB}^2 \sum_{i=1}^{4} (x_{Ai} x_{Bi})^2 + 0$
= $4q_A^2 + 4q_B^2 + 4q_{AB}^2$

Example 17.2

□ Memory-cache study:

$$\bar{y} = \frac{1}{4}(15 + 55 + 25 + 75) = 40$$
Total Variation = $\sum_{i=1}^{4} (y_i - \bar{y})^2$
= $(25^2 + 15^2 + 15^2 + 35^2)$
= 2100
= $4 \times 20^2 + 4 \times 10^2 + 4 \times 5^2$

Total variation= 2100
 Variation due to Memory = 1600 (76%)
 Variation due to cache = 400 (19%)
 Variation due to interaction = 100 (5%)
 Washington University in St. Louis

©2011 Raj Jain

Case Study 17.1: Interconnection Nets

- Memory interconnection networks: Omega and Crossbar.
- □ Memory reference patterns: *Random* and *Matrix*
- □ Fixed factors:
 - > Number of processors was fixed at 16.
 - > Queued requests were not buffered but blocked.
 - > Circuit switching instead of packet switching.
 - > Random arbitration instead of round robin.
 - ➤ Infinite interleaving of memory ⇒ no memory bank contention.

2² Design for Interconnection Networks

Factors Used in the Interconnection Network Study							
				L	evel		
Sym	loc	Factor		-1	1		
А		Type of the net	work	Crossba	ar Omega		
В	Address Pattern Used Random Matrix						
			Respo	onse			
А	В	Throughput T	90% Tr	ansit N	Response R		
-1	-1	0.0641	، و	3	1.655		
1	-1	0.4220		5	2.378		
-1	1	0.7922	6	2	1.262		
1	1	0.4717	2	4	2.190		
Washington U	Jniversity	in St. Louis	CSE567M		©2011 Raj Jain		
			17-17				

Interconnection Networks Results

Para-	Mean	Estin	nate	Variati	Variation Explaine		
meter	Т	Ν	R	Т	Ν	R	
q_0	0.5725	3.5	1.871				
q_A	0.0595	-0.5	-0.145	17.2%	20%	10.9%	
q_B	-0.1257	1.0	0.413	77.0%	80%	87.8%	
q_{AB}	-0.0346	0.0	0.051	5.8%	0%	1.3%	

- Average throughput = 0.5725
- $\square Most effective factor = B = Reference pattern$

 \Rightarrow The address patterns chosen are very different.

- □ Reference pattern explains \mp 0.1257 (77%) of variation.
- Effect of network type = 0.0595

Omega networks = Average + 0.0595

Crossbar networks = Average - 0.0595

 Slight interaction (0.0346) between reference pattern and network type.
 Washington University in St. Louis
 CSE567M
 ©2011 Raj Jain

General 2^k Factorial Designs

- □ k factors at two levels each.
 - 2^k experiments.
 - 2^k effects:

```
k main effects

\begin{pmatrix} k \\ 2 \\ k \\ 3 \end{pmatrix} two factor interactions

\begin{pmatrix} k \\ 3 \end{pmatrix} three factor interactions...
```

2^k Design Example

□ Three factors in designing a machine:

- > Cache size
- > Memory size
- > Number of processors

	Factor	Level -1	Level 1
A	Memory Size	4MB	16MB
В	Cache Size	1kB	$2\mathrm{kB}$
\mathbf{C}	Number of Processors	1	2
Washington Uni	versity in St. Louis CSE567M		©2011 Raj Jai

2^k Design Example (cont)

	Cache			4M]	Bytes	5	1	6M]	Byt	tes
	Size)	1	Proc	2 F	Proc	1 Pr	COC	2	Proc
	1K	Byte		14		46		22		58
	2K	Byte		10		50		34		86
	 	A	B	С	AB	AC	BC	AB	C	
	1	-1	-1	-1	1	1	1		-1	
	1	1	-1	-1	-1	-1	1		1	22
	1	-1	1	-1	-1	1	-1		1	10
	1	1	1	-1	1	-1	-1		-1	34
	1	-1	-1	1	1	-1	-1		1	46
	1	1	-1	1	-1	1	-1		-1	58
	1	-1	1	1	-1	-1	1		-1	50
	1	1	1	1	1	1	1		1	86
	320	80	40	160	40	16	24		9	Total
	40	10	5	20	5	2	3		1	Total/8
Washington U	University i	n St. Louis			CS	SE567M				©2(
					1	7-21				

Analysis of 2^k Design

SST =
$$2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

= $8(10^{2} + 5^{2} + 20^{2} + 5^{2} + 2^{2} + 3^{2} + 1^{2})$
= $800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512$
= $18\% + 4\% + 71\% + 4\% + 1\% + 2\% + 0\%$
= 100%

Number of Processors (C) is the most important factor.

- \square 2^k design allows k factors to be studied at two levels each
- □ Can compute main effects and all multi-factors interactions
- □ Easy computation using sign table method
- □ Easy allocation of variation using squares of effects

Exercise 17.1

Analyze the 2^3 design:

	A	1	A_2			
	C_1	C_2	C_1	C_2		
B_1	100	15	120	10		
B_2	40	30	20	50		

- > Quantify main effects and all interactions.
- > Quantify percentages of variation explained.
- Sort the variables in the order of decreasing importance.

Homework 17

Modified Exercise 17.1 Analyze the 2³ design:

	A_1		A_2	
	C_1	C_2	C_1	C_2
B_1	110	15	120	10
B_2	60	30	40	50

- > Quantify main effects and all interactions.
- > Quantify percentages of variation explained.
- Sort the variables in the order of decreasing importance.