Introduction to Experimental Design

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-11/

©2011 Raj Jain

Experimental Design and Analysis

How to:

- Design a proper set of experiments for measurement or simulation.
- Develop a model that best describes the data obtained.
- Estimate the contribution of each alternative to the performance.
- □ Isolate the measurement errors.
- □ Estimate confidence intervals for model parameters.
- □ Check if the alternatives are significantly different.
- □ Check if the model is adequate.

Example

Personal workstation design

- 1. Processor: 68000, Z80, or 8086.
- 2. Memory size: 512K, 2M, or 8M bytes
- 3. Number of Disks: One, two, three, or four
- 4. Workload: Secretarial, managerial, or scientific.
- 5. User education: High school, college, or postgraduate level.

Five **Factors** at 3x3x4x3x3 **levels**

Terminology

- **Response Variable**: Outcome.
 - E.g., throughput, response time
- **Factors**: Variables that affect the response variable.

E.g., CPU type, memory size, number of disk drives, workload used, and user's educational level.

Also called predictor variables or predictors.

□ Levels: The values that a factor can assume, E.g., the CPU type has three levels: 68000, 8080, or Z80.

of disk drives has four levels.

Also called **treatment**.

Primary Factors: The factors whose effects need to be quantified.

E.g., CPU type, memory size only, and number of disk drives.

Terminology (Cont)

- Secondary Factors: Factors whose impact need not be quantified.
 - E.g., the workloads.
- **Replication**: Repetition of all or some experiments.
- Design: The number of experiments, the factor level and number of replications for each experiment.

E.g., Full Factorial Design with 5 replications: $3 \times 3 \times 4 \times 3 \times 3$ or 324 experiments, each repeated five times.

- Experimental Unit: Any entity that is used for experiments.
 E.g., users. Generally, no interest in comparing the units.
- Goal minimize the impact of variation among the units.

Terminology (Cont)

□ Interaction \Rightarrow Effect of one factor depends upon the level of the other.

 Table 1: Noninteracting Factors

	A_1	A_2
B_1	3	5
B_2	6	8

 Table 2: Interacting Factors

		A_1	A_2
	B_1	3	5
	B_2	6	9
Washington University in St. Louis	CSE567M		
		16-8	

Common Mistakes in Experimentation

- □ The variation due to experimental error is ignored.
- □ Important parameters are not controlled.
- □ Effects of different factors are not isolated
- □ Simple one-factor-at-a-time designs are used
- □ Interactions are ignored
- □ Too many experiments are conducted.

Better: two phases.

Types of Experimental Designs

□ **Simple Designs**: Vary one factor at a time

of Experiments =
$$1 + \sum_{i=1}^{k} (n_i - 1)$$

- > Not statistically efficient.
- > Wrong conclusions if the factors have interaction.
- > Not recommended.
- **Full Factorial Design**: All combinations.

of Experiments =
$$\prod_{i=1}^{n} n_i$$

- > Can find the effect of all factors.
- > Too much time and money.
- ▹ May try 2^k design first.

Types of Experimental Designs (Cont)

□ Fractional Factorial Designs: Less than Full Factorial

- > Save time and expense.
- Less information.
- > May not get all interactions.
- > Not a problem if negligible interactions

A Sample Fractional Factorial Design

- □ Workstation Design:
 - (3 CPUs)(3 Memory levels)(3 workloads)(3 ed levels)

= 81 experiments

Experiment	CPU	Memory	Workload	Educational
Number		Level	Type	Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Post-graduate
3	68000	$8\mathrm{M}$	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	$8\mathrm{M}$	Managerial	Post-graduate
7	8086	512K	Secretarial	Post-graduate
8	8086	2M	Managerial	College
9	8086	$8\mathrm{M}$	Scientific	High School
Washington University in St. Louis CSE56		7M	©2011 Raj Jain	

- Goal of proper experimental design is to get the maximum information with minimum number of experiments
- □ Factors, levels, full-factorial designs

Homework 16: Exercise 16.1

- The performance of a system being designed depends upon the following three factors:
- > CPU type: 68000, 8086, 80286
- > Operating System type: CPM, MS-DOS, UNIX
- Disk drive type: A, B, C
- How many experiments are required to analyze the performance if:
 - a. There is significant interaction among factors.
 - b. There is no interaction among factors.
 - c. The interactions are small compared to main effects.